Lecture notes on descriptional complexity and randomness

A didactical survey of the foundations of Algorithmic Information Theory. These notes are short on motivation, history and background but introduce some of the main techniques and concepts of the field. The “manuscript” has been evolving over the years. Please, look at “Version history” below to see what has changed when.

[1]  Wolfgang J. Paul,et al.  An Information-Theoretic Approach to Time Bounds for On-Line Computation , 1981, J. Comput. Syst. Sci..

[2]  Gregory J. Chaitin,et al.  Information-Theoretic Limitations of Formal Systems , 1974, JACM.

[3]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[4]  V. Vovk,et al.  On the Empirical Validity of the Bayesian Method , 1993 .

[5]  V. V'yugin Ergodic Theorems for Individual Random Sequences , 1998, Theor. Comput. Sci..

[6]  Claus-Peter Schnorr,et al.  The process complexity and effective random tests. , 1972, STOC.

[7]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[8]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[10]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[11]  Harald Bergstriim Mathematical Theory of Probability and Statistics , 1966 .

[12]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[13]  P. Libby The Scientific American , 1881, Nature.

[14]  Klaus Weihrauch,et al.  Randomness Spaces , 1998, ICALP.

[15]  Péter Gács,et al.  Exact Expressions for Some Randomness Tests , 1979, Math. Log. Q..

[16]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[17]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[18]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[19]  Leonid A. Levin,et al.  Randomness Conservation Inequalities; Information and Independence in Mathematical Theories , 1984, Inf. Control..

[20]  Ann Yasuhara,et al.  Recursive function theory and logic , 1971, Computer science and applied mathematics.

[21]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[22]  Donald W. Loveland,et al.  A Variant of the Kolmogorov Concept of Complexity , 1969, Information and Control.

[23]  Mathieu Hoyrup,et al.  Computability of probability measures and Martin-Löf randomness over metric spaces , 2007, Inf. Comput..

[24]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[25]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[26]  Bethany Ann Birkett Rosencrantz and Guildenstern are dead : a play , 1971 .

[27]  I. Csiszár Information Theory , 1981 .

[28]  P. Laplace A Philosophical Essay On Probabilities , 1902 .

[29]  Claus-Peter Schnorr,et al.  General Random Sequences and Learnable Sequences , 1977, J. Symb. Log..

[30]  David G. Willis,et al.  Computational Complexity and Probability Constructions , 1970, JACM.

[31]  C. Peirce An unpublished manuscript) , 2016 .

[32]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[33]  C. Howson Theories of Probability , 1995 .

[34]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[35]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[36]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[37]  Peter Gacs Randomness and Probability—Complexity of Description , 2004 .

[38]  Ray J. Solomonoff,et al.  Complexity-based induction systems: Comparisons and convergence theorems , 1978, IEEE Trans. Inf. Theory.

[39]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[40]  Leonid A. Levin,et al.  One-way functions and pseudorandom generators , 1985, STOC '85.

[41]  Péter Gács,et al.  On the relation between descriptional complexity and algorithmic probability , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[42]  Péter Gács,et al.  Algorithmic statistics , 2000, IEEE Trans. Inf. Theory.

[43]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[44]  Péter Gács,et al.  Uniform test of algorithmic randomness over a general space , 2003, Theor. Comput. Sci..

[45]  J. Hartigan Theories of Probability , 1983 .

[46]  R. M. Solovay On Random R, E. Sets , 1977 .

[47]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[48]  Andrei N. Kolmogorov,et al.  Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.

[49]  Vasco Brattka,et al.  Computability on subsets of metric spaces , 2003, Theor. Comput. Sci..

[50]  K. Mainzer,et al.  Natural Numbers, Integers, and Rational Numbers , 1991 .

[51]  Gregory J. Chaitin,et al.  ALGORITHMIC ENTROPY OF SETS , 1976 .

[52]  C. Villani Optimal Transport: Old and New , 2008 .

[53]  L. Goddard Information Theory , 1962, Nature.