Emerging Issues in Nanoparticle Aerosol Science and Technology

Sheldon K. Friedlander and David Y. H. Pui Department of Chemical Engineering, 5531-K Boelter Hall, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA (Tel: 310-825-2206; Fax: 310-206-4107; E-mail: skf@seas.ucla.edu); Director of the Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota, 111 Church St., S.E., Minneapolis, MN 55455, USA

[1]  Guy P. Brasseur,et al.  Atmospheric chemistry and global change , 1999 .

[2]  D. Kittelson Engines and nanoparticles: a review , 1998 .

[3]  Mark Z. Jacobson,et al.  Fundamentals of atmospheric modeling , 1998 .

[4]  S. Friedlander,et al.  Morphological properties of atmospheric aerosol aggregates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Peters,et al.  Respiratory effects are associated with the number of ultrafine particles. , 1997, American journal of respiratory and critical care medicine.

[6]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[7]  Sotiris E. Pratsinis,et al.  Aerosol flame reactors for manufacture of nanoparticles , 2002 .

[8]  Da-Ren Chen,et al.  Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events , 2001 .

[9]  J. Seinfeld,et al.  Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations , 2003 .

[10]  Kerrie Mengersen,et al.  Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends , 2002 .

[11]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[12]  Paul Meakin,et al.  A Historical Introduction to Computer Models for Fractal Aggregates , 1999 .

[13]  K. Prather,et al.  Mass spectrometry of aerosols. , 1999, Chemical reviews.

[14]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[15]  J. Smith,et al.  Thermal Desorption Chemical Ionization Mass Spectrometer for Ultrafine Particle Chemical Composition , 2003 .

[16]  Panagiotis D. Christofides,et al.  Model-Based Control of Particulate Processes , 2002 .

[17]  S. Friedlander,et al.  Particle nucleation and growth in a free turbulent jet , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  P. Bhave,et al.  The chemical composition of atmospheric ultrafine particles , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  High Speed Particle Beam Generation: A Dynamic Focusing Mechanism for Selecting Ultrafine Particles , 2000 .

[20]  P. Ziemann,et al.  Real-Time Chemical Analysis of Organic Aerosols Using a Thermal Desorption Particle Beam Mass Spectrometer , 2000 .

[21]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[22]  T. Vicsek Fractal Growth Phenomena , 1989 .

[23]  A. Nel,et al.  Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. , 2002, Environmental health perspectives.

[24]  S. Downey,et al.  Single particle characterization by time-of-flight mass spectrometry , 1995 .

[25]  Yifang Zhu,et al.  Study of ultrafine particles near a major highway with heavy-duty diesel traffic , 2002 .