Quadrature filters for one-step randomly delayed measurements

Abstract In this paper, two existing quadrature filters, viz. , the Gauss–Hermite filter (GHF) and the sparse-grid Gauss–Hermite filter (SGHF) are extended to solve nonlinear filtering problems with one step randomly delayed measurements. The developed filters are applied to solve a maneuvering target tracking problem with one step randomly delayed measurements. Simulation results demonstrate the enhanced accuracy of the proposed delayed filters compared to the delayed cubature Kalman filter and delayed unscented Kalman filter.

[1]  H. Haleh,et al.  A New Approach to Forecasting Stock Price with EKF Data Fusion , 2011 .

[2]  Simon Haykin,et al.  Bayesian sequential state estimation for MIMO wireless communications , 2004, Proceedings of the IEEE.

[3]  Shovan Bhaumik,et al.  Risk-sensitive formulation of unscented Kalman filter , 2009 .

[4]  S. Bhaumik,et al.  Bearing only tracking using Gauss-Hermite filter , 2012, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[5]  Aurora Hermoso-Carazo,et al.  Unscented filtering algorithm using two-step randomly delayed observations in nonlinear systems , 2009 .

[6]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[7]  Robert J. Elliott,et al.  Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.

[8]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[9]  Niels Kjølstad Poulsen,et al.  Incorporation of time delayed measurements in a discrete-time Kalman filter , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[10]  Ming Xin,et al.  Sparse-grid quadrature nonlinear filtering , 2012, Autom..

[11]  Aurora Hermoso-Carazo,et al.  Extended and unscented filtering algorithms using one-step randomly delayed observations , 2007, Appl. Math. Comput..

[12]  Ksenia Ponomareva,et al.  An exact minimum variance filter for a class of discrete time systems with random parameter perturbations , 2014 .

[13]  Lei Zhang,et al.  Decentralized Filtering With Random Sampling and Delay , 1994, Inf. Sci..

[14]  Guobin Chang,et al.  Alternative formulation of the Kalman filter for correlated process and observation noise , 2014 .

[15]  D. S. Bayard,et al.  Extended horizon liftings for stable inversion of nonminimum-phase systems , 1994, IEEE Trans. Autom. Control..

[16]  Shovan Bhaumik,et al.  Cubature quadrature Kalman filter , 2013, IET Signal Process..

[17]  Ming Xin,et al.  Relations Between Sparse-Grid Quadrature Rule and Spherical-Radial Cubature Rule in Nonlinear Gaussian Estimation , 2015, IEEE Transactions on Automatic Control.

[18]  Shing-Tai Pan,et al.  Robust Kalman filter synthesis for uncertain multiple time-delay stochastic systems , 1996 .

[19]  I. Nagy,et al.  Recursive state estimation for hybrid systems , 2012 .

[20]  A. Farina,et al.  Tracking a ballistic target: comparison of several nonlinear filters , 2002 .

[21]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[22]  Robin J. Evans,et al.  A Bayesian solution and its approximations to out-of-sequence measurement problems , 2003, Inf. Fusion.

[23]  Quan Pan,et al.  Gaussian filter for nonlinear systems with one-step randomly delayed measurements , 2013, Autom..

[24]  Yaakov Bar-Shalom Update with out-of-sequence measurements in tracking: exact solution , 2002 .

[25]  Shovan Bhaumik,et al.  Quadrature filters for maneuvering target tracking , 2014, International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014).

[26]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[27]  Xia Zhao,et al.  Novel criteria on H ∞ filter design of linear networked control systems , 2013, IET Signal Process..

[28]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[29]  Quan Pan,et al.  Design and implementation of Gaussian filter for nonlinear system with randomly delayed measurements and correlated noises , 2014, Appl. Math. Comput..

[30]  Asok Ray,et al.  State Estimation Using Randomly Delayed Measurements , 1993 .

[31]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..