A unified potential-based cohesive model of mixed-mode fracture

Abstract A generalized potential-based constitutive model for mixed-mode cohesive fracture is presented in conjunction with physical parameters such as fracture energy, cohesive strength and shape of cohesive interactions. It characterizes different fracture energies in each fracture mode, and can be applied to various material failure behavior (e.g. quasi-brittle). The unified potential leads to both intrinsic (with initial slope indicators to control elastic behavior) and extrinsic cohesive zone models. Path dependence of work-of-separation is investigated with respect to proportional and non-proportional paths—this investigation demonstrates consistency of the cohesive constitutive model. The potential-based model is verified by simulating a mixed-mode bending test. The actual potential is named PPR (Park–Paulino–Roesler), after the first initials of the authors’ last names.

[1]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[2]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[3]  Glaucio H. Paulino,et al.  J resistance behavior in functionally graded materials using cohesive zone and modified boundary layer models , 2006 .

[4]  Glaucio H. Paulino,et al.  Influence of the Cohesive Zone Model Shape Parameter on Asphalt Concrete Fracture Behavior , 2008 .

[5]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[6]  Huajian Gao,et al.  Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .

[7]  Glaucio H. Paulino,et al.  Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials , 2007 .

[8]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[9]  M. D. Thouless,et al.  Mixed-mode fracture analyses of plastically-deforming adhesive joints , 2001 .

[10]  L. Girifalco,et al.  Application of the Morse Potential Function to Cubic Metals , 1959 .

[11]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[12]  K. T. Ramesh,et al.  A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution , 2005 .

[13]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[14]  Baohua Ji,et al.  Modeling fracture in nanomaterials via a virtual internal bond method , 2003 .

[15]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[16]  A. Needleman,et al.  The simulation of dynamic crack propagation using the cohesive segments method , 2008 .

[17]  Yonggang Huang,et al.  Finite element implementation of virtual internal bond model for simulating crack behavior , 2004 .

[18]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[19]  L. Treloar Theory of Large Elastic Deformations , 1943, Nature.

[20]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[21]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[22]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[23]  L. Banks‐Sills,et al.  A mixed-mode fracture specimen: analysis and testing , 1986 .

[24]  Huajian Gao,et al.  Crack nucleation and growth as strain localization in a virtual-bond continuum , 1998 .

[25]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[26]  Alberto Carpinteri,et al.  SINGLE EDGE NOTCHED SPECIMEN SUBJECTED TO FOUR POINT SHEAR: AN EXPERIMENTAL INVESTIGATION. FRACTURE OF CONCRETE AND ROCK: RECENT DEVELOPMENTS. PAPERS PRESENTED AT THE INTERNATIONAL CONFERENCE, UNIVERSITY OF WALES, COLLEGE OF CARDIFF, SCHOOL OF ENGINEERING, SEPTEMBER 20-22, 1989 , 1989 .

[27]  Huajian Gao,et al.  On the Modified Virtual Internal Bond Method , 2005 .

[28]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[29]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[30]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[31]  Glaucio H. Paulino,et al.  Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .

[32]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[33]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .

[34]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[35]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[36]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[37]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[38]  G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .

[39]  K. Volokh Comparison between cohesive zone models , 2004 .

[40]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .