A second order symplectic partitioned Runge-Kutta scheme for Maxwell's equations
暂无分享,去创建一个
[1] T. Hirono,et al. Time-domain simulation of electromagnetic field using a symplectic integrator , 1997 .
[2] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[3] Yoshio Suzuki,et al. The symplectic finite difference time domain method , 2001 .
[4] A. Messiah. Quantum Mechanics , 1961 .
[5] I. Saitoh,et al. Stability of symplectic finite-difference time-domain methods , 2002 .
[6] R. Ruth,et al. Fourth-order symplectic integration , 1990 .
[7] Yuzo Yoshikuni,et al. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator , 2001 .
[8] P. Rentrop,et al. Multirate Partitioned Runge-Kutta Methods , 2001 .
[9] Geng. CONSTRUCTION OF HIGH ORDER SYMPLECTIC PRK METHODS , 1995 .
[10] T. Hirono,et al. Stability and numerical dispersion of symplectic fourth-order time-domain schemes for optical field simulation , 1998 .
[11] G. Rodrigue,et al. High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations , 2004, IEEE Transactions on Antennas and Propagation.
[12] G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.