Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators
暂无分享,去创建一个
Steven T. Flammia | Jens Eisert | Yi-Kai Liu | David Gross | D. Gross | J. Eisert | Yi-Kai Liu | S. Flammia
[1] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[2] J. Kowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[3] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[4] Vogel,et al. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.
[5] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[6] K.R.W. Jones. Principles of quantum inference , 1991 .
[7] Beck,et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.
[8] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[9] R. Bhatia. Matrix Analysis , 1996 .
[10] Z. Hradil. Quantum-state estimation , 1996, quant-ph/9609012.
[11] P. Knight,et al. Reconstruction of Quantum States of Spin Systems: From Quantum Bayesian Inference to Quantum Tomography , 1998 .
[12] J. Amiet,et al. Reconstructing the density matrix of a spin s through Stern - Gerlach measurements , 1998 .
[13] J. Amiet,et al. Reconstructing a pure state of a spin s through three Stern-Gerlach measurements , 1998, quant-ph/9809018.
[14] G. D’Ariano,et al. Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.
[15] R. Gill,et al. State estimation for large ensembles , 1999, quant-ph/9902063.
[16] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[17] Xiaotong Shen. ON BAHADUR EFFICIENCY AND MAXIMUM LIKELIHOOD ESTIMATION IN GENERAL PARAMETER SPACES , 2001 .
[18] C. Caves,et al. Quantum Bayes rule , 2000, quant-ph/0008113.
[19] M. Ježek,et al. Iterative algorithm for reconstruction of entangled states , 2000, quant-ph/0009093.
[20] Andrew G. White,et al. Measurement of qubits , 2001, quant-ph/0103121.
[21] J. Fiurášek,et al. Quantum inference of states and processes , 2002, quant-ph/0210146.
[22] A. G. White,et al. Ancilla-assisted quantum process tomography. , 2003, Physical review letters.
[23] Aephraim M. Steinberg,et al. Quantum process tomography on vibrational states of atoms in an optical lattice , 2003, quant-ph/0312210.
[24] T. Ralph,et al. Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.
[25] F. Schmidt-Kaler,et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.
[26] T. Ralph,et al. Demonstration of an all-optical quantum controlled-NOT gate , 2004, quant-ph/0403062.
[27] A. Vaziri,et al. Triggered qutrits for quantum communication protocols. , 2004, Physical review letters.
[28] T. Ralph,et al. Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.
[29] V. Buzek. Quantum tomography from incomplete data via MaxEnt principle , 2004 .
[30] F. Neri. Quantum Bayesian methods and subsequent measurements , 2005, quant-ph/0508012.
[31] F. Komaki,et al. Bayesian predictive density operators for exchangeable quantum-statistical models , 2005 .
[32] C. Caves,et al. Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.
[33] R. Gill,et al. Optimal full estimation of qubit mixed states , 2005, quant-ph/0510158.
[34] A. Zeilinger,et al. Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography. , 2004, Physical review letters.
[35] O. Gühne,et al. 03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .
[36] M. Mohseni,et al. Direct characterization of quantum dynamics. , 2006, Physical review letters.
[37] A. Silberfarb,et al. Efficient quantum-state estimation by continuous weak measurement and dynamical control. , 2006, Physical review letters.
[38] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[39] T. Monz,et al. Process tomography of ion trap quantum gates. , 2006, Physical review letters.
[40] M. Mohseni,et al. Direct characterization of quantum dynamics: General theory , 2006, quant-ph/0601034.
[41] E. Knill,et al. Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.
[42] Daniel A. Lidar,et al. Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.
[43] E. Candès,et al. Compressed sensing and robust recovery of low rank matrices , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.
[44] K. Southwell. Quantum coherence , 2008, Nature.
[45] D. James,et al. Numerical strategies for quantum tomography: Alternatives to full optimization , 2009 .
[46] J. Gambetta,et al. Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.
[47] R. Chakrabarti,et al. Asymptotic Efficiency and Finite Sample Performance of Frequentist Quantum State Estimation , 2009, 0904.1628.
[48] K. Audenaert,et al. Quantum tomographic reconstruction with error bars: a Kalman filter approach , 2008, 0809.3359.
[49] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[50] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[51] Stephen Becker,et al. Quantum state tomography via compressed sensing. , 2009, Physical review letters.
[52] R. Blume-Kohout. Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.
[53] C. Schwemmer,et al. Permutationally invariant quantum tomography. , 2010, Physical review letters.
[54] D. Gross,et al. Efficient quantum state tomography. , 2010, Nature communications.
[55] I. Walmsley,et al. Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography , 2009, 0911.4310.
[56] Vincent Nesme,et al. Note on sampling without replacing from a finite collection of matrices , 2010, ArXiv.
[57] R. Blume-Kohout. Hedged maximum likelihood quantum state estimation. , 2010, Physical review letters.
[58] S. Flammia,et al. Random unitary maps for quantum state reconstruction , 2009, 0912.2101.
[59] Yi-Kai Liu,et al. Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.
[60] Emmanuel J. Candès,et al. Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..
[61] Emmanuel J. Candès,et al. Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.
[62] Y. S. Teo,et al. Quantum-state reconstruction by maximizing likelihood and entropy. , 2011, Physical review letters.
[63] Yi-Kai Liu,et al. Universal low-rank matrix recovery from Pauli measurements , 2011, NIPS.
[64] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[65] T. Monz,et al. An open-system quantum simulator with trapped ions , 2011, Nature.
[66] Y. S. Teo,et al. Adaptive schemes for incomplete quantum process tomography , 2011, 1110.1202.
[67] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[68] M. Murao,et al. Error probability analysis in quantum tomography: a tool for evaluating experiments , 2010, 1009.2164.
[69] David Poulin,et al. Practical characterization of quantum devices without tomography. , 2011, Physical review letters.
[70] Aephraim M. Steinberg,et al. Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .
[71] S. V. Enk,et al. Information criteria for efficient quantum state estimation , 2011, 1103.3251.
[72] R. Kosut,et al. Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.
[73] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[74] R. Blume-Kohout. Robust error bars for quantum tomography , 2012, 1202.5270.
[75] Berthold-Georg Englert,et al. A SIMPLE MINIMAX ESTIMATOR FOR QUANTUM STATES , 2012, 1202.5136.
[76] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[77] Marcus P. da Silva,et al. Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.
[78] I. Dryden,et al. Rank-based model selection for multiple ions quantum tomography , 2012, 1206.4032.
[79] D. Poulin,et al. Practical learning method for multi-scale entangled states , 2012, 1204.0792.
[80] Matthias Christandl,et al. Reliable quantum state tomography. , 2011, Physical review letters.
[81] Ting Zhang,et al. Experimental quantum state tomography via compressed sampling. , 2012, Physical review letters.
[82] Y. S. Teo,et al. Incomplete quantum state estimation: A comprehensive study , 2012, 1202.1713.
[83] R. Chakrabarti,et al. Optimal state estimation of controllable quantum dynamical systems , 2012 .
[84] T. Heinosaari,et al. Quantum Tomography under Prior Information , 2011, 1109.5478.