Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators

Intuitively, if a density operator has small rank, then it should be easier to estimate from experimental data, since in this case only a few eigenvectors need to be learned. We prove two complementary results that confirm this intuition. Firstly, we show that a low-rank density matrix can be estimated using fewer copies of the state, i.e. the sample complexity of tomography decreases with the rank. Secondly, we show that unknown low- rank states can be reconstructed from an incomplete set of measurements, using techniques from compressed sensing and matrix completion. These techniques use simple Pauli measurements, and their output can be certified without making any assumptions about the unknown state. In this paper, we present a new theoretical analysis of compressed tomography, based on the restricted isometry property for low-rank matrices. Using these tools, we obtain near-optimal error bounds for the realistic situation where the data contain noise due to finite statistics, and the density matrix is full-rank with decaying eigenvalues. We also obtain upper bounds on the sample complexity of compressed tomography, and almost-matching lower bounds on the sample complexity of any procedure using adaptive sequences of Pauli measurements. Using numerical simulations, we 5 Author to whom any correspondence should be addressed.

[1]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[2]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[3]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[4]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  K.R.W. Jones Principles of quantum inference , 1991 .

[7]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[8]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[9]  R. Bhatia Matrix Analysis , 1996 .

[10]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[11]  P. Knight,et al.  Reconstruction of Quantum States of Spin Systems: From Quantum Bayesian Inference to Quantum Tomography , 1998 .

[12]  J. Amiet,et al.  Reconstructing the density matrix of a spin s through Stern - Gerlach measurements , 1998 .

[13]  J. Amiet,et al.  Reconstructing a pure state of a spin s through three Stern-Gerlach measurements , 1998, quant-ph/9809018.

[14]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[15]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  Xiaotong Shen ON BAHADUR EFFICIENCY AND MAXIMUM LIKELIHOOD ESTIMATION IN GENERAL PARAMETER SPACES , 2001 .

[18]  C. Caves,et al.  Quantum Bayes rule , 2000, quant-ph/0008113.

[19]  M. Ježek,et al.  Iterative algorithm for reconstruction of entangled states , 2000, quant-ph/0009093.

[20]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[21]  J. Fiurášek,et al.  Quantum inference of states and processes , 2002, quant-ph/0210146.

[22]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[23]  Aephraim M. Steinberg,et al.  Quantum process tomography on vibrational states of atoms in an optical lattice , 2003, quant-ph/0312210.

[24]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[25]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[26]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2004, quant-ph/0403062.

[27]  A. Vaziri,et al.  Triggered qutrits for quantum communication protocols. , 2004, Physical review letters.

[28]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[29]  V. Buzek Quantum tomography from incomplete data via MaxEnt principle , 2004 .

[30]  F. Neri Quantum Bayesian methods and subsequent measurements , 2005, quant-ph/0508012.

[31]  F. Komaki,et al.  Bayesian predictive density operators for exchangeable quantum-statistical models , 2005 .

[32]  C. Caves,et al.  Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.

[33]  R. Gill,et al.  Optimal full estimation of qubit mixed states , 2005, quant-ph/0510158.

[34]  A. Zeilinger,et al.  Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography. , 2004, Physical review letters.

[35]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[36]  M. Mohseni,et al.  Direct characterization of quantum dynamics. , 2006, Physical review letters.

[37]  A. Silberfarb,et al.  Efficient quantum-state estimation by continuous weak measurement and dynamical control. , 2006, Physical review letters.

[38]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[39]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[40]  M. Mohseni,et al.  Direct characterization of quantum dynamics: General theory , 2006, quant-ph/0601034.

[41]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[42]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[43]  E. Candès,et al.  Compressed sensing and robust recovery of low rank matrices , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[44]  K. Southwell Quantum coherence , 2008, Nature.

[45]  D. James,et al.  Numerical strategies for quantum tomography: Alternatives to full optimization , 2009 .

[46]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[47]  R. Chakrabarti,et al.  Asymptotic Efficiency and Finite Sample Performance of Frequentist Quantum State Estimation , 2009, 0904.1628.

[48]  K. Audenaert,et al.  Quantum tomographic reconstruction with error bars: a Kalman filter approach , 2008, 0809.3359.

[49]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[50]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[51]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[52]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[53]  C. Schwemmer,et al.  Permutationally invariant quantum tomography. , 2010, Physical review letters.

[54]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[55]  I. Walmsley,et al.  Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography , 2009, 0911.4310.

[56]  Vincent Nesme,et al.  Note on sampling without replacing from a finite collection of matrices , 2010, ArXiv.

[57]  R. Blume-Kohout Hedged maximum likelihood quantum state estimation. , 2010, Physical review letters.

[58]  S. Flammia,et al.  Random unitary maps for quantum state reconstruction , 2009, 0912.2101.

[59]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[60]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[61]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[62]  Y. S. Teo,et al.  Quantum-state reconstruction by maximizing likelihood and entropy. , 2011, Physical review letters.

[63]  Yi-Kai Liu,et al.  Universal low-rank matrix recovery from Pauli measurements , 2011, NIPS.

[64]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[65]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[66]  Y. S. Teo,et al.  Adaptive schemes for incomplete quantum process tomography , 2011, 1110.1202.

[67]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[68]  M. Murao,et al.  Error probability analysis in quantum tomography: a tool for evaluating experiments , 2010, 1009.2164.

[69]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[70]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[71]  S. V. Enk,et al.  Information criteria for efficient quantum state estimation , 2011, 1103.3251.

[72]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[73]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[74]  R. Blume-Kohout Robust error bars for quantum tomography , 2012, 1202.5270.

[75]  Berthold-Georg Englert,et al.  A SIMPLE MINIMAX ESTIMATOR FOR QUANTUM STATES , 2012, 1202.5136.

[76]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[77]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[78]  I. Dryden,et al.  Rank-based model selection for multiple ions quantum tomography , 2012, 1206.4032.

[79]  D. Poulin,et al.  Practical learning method for multi-scale entangled states , 2012, 1204.0792.

[80]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[81]  Ting Zhang,et al.  Experimental quantum state tomography via compressed sampling. , 2012, Physical review letters.

[82]  Y. S. Teo,et al.  Incomplete quantum state estimation: A comprehensive study , 2012, 1202.1713.

[83]  R. Chakrabarti,et al.  Optimal state estimation of controllable quantum dynamical systems , 2012 .

[84]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.