Multifunctional high-performance van der Waals heterostructures.

[1]  Sungjoo Lee,et al.  Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic , 2016, Nature Communications.

[2]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2016, Nature nanotechnology.

[3]  Jing Kong,et al.  Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics. , 2016, Nano letters.

[4]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[5]  Lain‐Jong Li,et al.  Highly Flexible and High‐Performance Complementary Inverters of Large‐Area Transition Metal Dichalcogenide Monolayers , 2016, Advanced materials.

[6]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[7]  E. Hwang,et al.  Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. , 2016, Nano letters.

[8]  M. Dresselhaus,et al.  Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. , 2016, Nano letters.

[9]  Yan Liu,et al.  Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. , 2016, ACS nano.

[10]  Kenji Watanabe,et al.  A WSe2/MoSe2 heterostructure photovoltaic device , 2015 .

[11]  S. Koester,et al.  Symmetric complementary logic inverter using integrated black phosphorus and MoS2 transistors , 2015, 1508.05413.

[12]  P. Jeon,et al.  Dual Gate Black Phosphorus Field Effect Transistors on Glass for NOR Logic and Organic Light Emitting Diode Switching. , 2015, Nano letters.

[13]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[14]  Hua Yu,et al.  Gate tunable MoS2–black phosphorus heterojunction devices , 2015 .

[15]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[16]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[17]  R. Moriya,et al.  Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures , 2014, 1408.6942.

[18]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS nano.

[19]  P. Ajayan,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[20]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[21]  Yuping Zeng,et al.  High-gain inverters based on WSe2 complementary field-effect transistors. , 2014, ACS nano.

[22]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[23]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[24]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[25]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[26]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[27]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[28]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[29]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[30]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[31]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[32]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[33]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[34]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[35]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[36]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[37]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[38]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[39]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[40]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[41]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[42]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[43]  B. Matthias,et al.  Superconducting Phosphorus , 1968, Science.

[44]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .