Abstraction Refinement for Bounded Model Checking
暂无分享,去创建一个
[1] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[2] James M. Crawford,et al. Experimental Results on the Crossover Point inSatis ability , 1993 .
[3] A. Campbell,et al. Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.
[4] Armin Biere,et al. Symbolic Model Checking without BDDs , 1999, TACAS.
[5] Joao Marques-Silva,et al. The Impact of Branching Heuristics in Propositional Satisfiability Algorithms , 1999, EPIA.
[6] M. Moskewicz,et al. Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).
[7] Daniel Geist,et al. Symbolic Localization Reduction with Reconstruction Layering and Backtracking , 2002, CAV.
[8] Ofer Strichman,et al. SAT Based Abstraction-Refinement Using ILP and Machine Learning Techniques , 2002, CAV.
[9] Helmut Veith,et al. Automated Abstraction Refinement for Model Checking Large State Spaces Using SAT Based Conflict Analysis , 2002, FMCAD.
[10] Moshe Y. Vardi,et al. Multiple-Counterexample Guided Iterative Abstraction Refinement: An Industrial Evaluation , 2003, TACAS.
[11] Zijiang Yang,et al. Iterative Abstraction using SAT-based BMC with Proof Analysis , 2003, ICCAD 2003.
[12] Kenneth L. McMillan,et al. Automatic Abstraction without Counterexamples , 2003, TACAS.
[13] Chao Wang,et al. Refining the SAT decision ordering for bounded model checking , 2004, Proceedings. 41st Design Automation Conference, 2004..
[14] Kenneth L. McMillan,et al. A Hybrid of Counterexample-Based and Proof-Based Abstraction , 2004, FMCAD.
[15] Wojciech Penczek,et al. From Bounded to Unbounded Model Checking for Temporal Epistemic Logic , 2004, Fundam. Informaticae.
[16] Rajeev Alur,et al. A Temporal Logic of Nested Calls and Returns , 2004, TACAS.
[17] Robert P. Kurshan,et al. Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach , 2014 .