Contact Dynamics versus Legendrian and Lagrangian Submanifolds

We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are E-mail: oesen@gtu.edu.tr E-mail: manuel.lainz@icmat.es E-mail: mdeleon@icmat.es E-mail: jcmarrer@ull.edu.es 1 recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics. MSC2020 classification: 53D22; 70G45.

[1]  J. Marrero,et al.  Reduced dynamics and Lagrangian submanifolds of symplectic manifolds , 2014, 1402.2847.

[2]  S. Benenti Hamiltonian Structures and Generating Families , 2011 .

[3]  A. Weinstein The symplectic “category” , 1982 .

[4]  Miroslav Grmela Multiscale Thermodynamics , 2021, Entropy.

[5]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[6]  A. Banyaga The Structure of Classical Diffeomorphism Groups , 1997 .

[7]  Kaizhi Wang,et al.  Implicit variational principle for contact Hamiltonian systems , 2017 .

[8]  Mark J. Gotay,et al.  Presymplectic manifolds and the Dirac-Bergmann theory of constraints , 1978 .

[9]  M. Grmela,et al.  Multiscale Thermo-Dynamics , 2018 .

[10]  Ray Skinner,et al.  Generalized Hamiltonian dynamics. I. Formulation on T*Q⊕TQ , 1983 .

[12]  M. Salgado,et al.  On the k-symplectic, k-cosymplectic and multisymplectic formalisms of classical field theories , 2007, 0705.4364.

[13]  矢野 健太郎,et al.  Tangent and cotangent bundles : differential geometry , 1973 .

[14]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[15]  A. Bravetti Contact geometry and thermodynamics , 2019, International Journal of Geometric Methods in Modern Physics.

[16]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[17]  Tulczyjew’s triplet for lie groups III: Higher order dynamics and reductions for iterated bundles , 2021, Theoretical and Applied Mechanics.

[18]  Geometry of multisymplectic Hamiltonian first order field theories , 2000, math-ph/0004005.

[19]  Peter Salamon,et al.  Contact structure in thermodynamic theory , 1991 .

[20]  W. Tulczyjew,et al.  Integrability of implicit differential equations , 1995 .

[21]  Manuel Lainz Valc'azar,et al.  Contact Hamiltonian systems , 2018, Journal of Mathematical Physics.

[22]  James D. Meiss Hamiltonian systems , 2007, Scholarpedia.

[23]  D. D. Diego,et al.  Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms , 1997 .

[24]  M. de León,et al.  Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems , 2016, 1612.06224.

[25]  C. Godbillon Géométrie différentielle et mécanique analytique , 1969 .

[26]  J. Sniatycki,et al.  Generating Forms of Lagrangian Submanifolds , 1972 .

[27]  M. D. Le'on,et al.  A Hamilton-Jacobi theory for implicit differential systems , 2017, 1708.01586.

[28]  P. Guha,et al.  On Geometry of Schmidt Legendre Transformation , 2016, 1607.08348.

[29]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[30]  Florio M. Ciaglia,et al.  Contact manifolds and dissipation, classical and quantum , 2018, Annals of Physics.

[31]  Darryl D. Holm,et al.  Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .

[32]  R. Bains,et al.  Methods of differential geometry in analytical mechanics , 1992 .

[33]  Alessandro Bravetti,et al.  Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.

[34]  K. Grabowska,et al.  The Tulczyjew triple in mechanics on a Lie group , 2016, 1602.02600.

[35]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[36]  W. M. Tulczyjew The Legendre transformation , 1977 .

[37]  B. Lawruk,et al.  Special symplectic spaces , 1975 .

[38]  A. Simoes,et al.  Contact geometry for simple thermodynamical systems with friction , 2020, Proceedings of the Royal Society A.

[39]  Andrew James Bruce,et al.  Remarks on contact and Jacobi geometry , 2015, 1507.05405.

[40]  M. D. Le'on,et al.  METHODS OF DIFFERENTIAL GEOMETRY IN CLASSICAL FIELD THEORIES: K-SYMPLECTIC AND K-COSYMPLECTIC APPROACHES , 2014, 1409.5604.

[41]  Tulczyjew Triples in Higher Derivative Field Theory , 2014, 1406.6503.

[42]  Manuel Lainz Valc'azar,et al.  Singular Lagrangians and precontact Hamiltonian systems , 2019, International Journal of Geometric Methods in Modern Physics.

[43]  A. Kirillov LOCAL LIE ALGEBRAS , 1976 .

[44]  M. D. Le'on,et al.  Higher-order contact mechanics , 2020, 2009.12160.

[45]  O. Esen,et al.  Tulczyjew's Triplet for Lie Groups II: Dynamics , 2015, 1503.06566.

[46]  C. Marle On Jacobi Manifolds and Jacobi Bundles , 1991 .

[47]  J. Grabowski,et al.  Tulczyjew Triples: From Statics to Field Theory , 2013, 1306.2744.

[48]  K. Grabowska A Tulczyjew triple for classical fields , 2011, 1109.2533.

[49]  Kaizhi Wang,et al.  Variational principle for contact Hamiltonian systems and its applications , 2017, Journal de Mathématiques Pures et Appliquées.

[50]  Miroslav Grmela,et al.  Contact Geometry of Mesoscopic Thermodynamics and Dynamics , 2014, Entropy.

[51]  Pawel Urbanski,et al.  A slow and careful Legendre transformation for singular Lagrangians , 1999 .

[52]  O. Esen,et al.  A Hamilton–Jacobi formalism for higher order implicit Lagrangians , 2019, Journal of Physics A: Mathematical and Theoretical.

[54]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[55]  Marshall Baker,et al.  Lectures on quantum mechanics , 2014, Quantum Information Processing.

[56]  A. Bravetti,et al.  Contact Hamiltonian Mechanics , 2016, 1604.08266.

[57]  J. Grabowski,et al.  GEOMETRY OF LAGRANGIAN AND HAMILTONIAN FORMALISMS IN THE DYNAMICS OF STRINGS , 2014, 1401.6970.

[58]  C. M. Campos,et al.  Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds , 2011, 1110.4778.

[59]  Alan Weinstein,et al.  Lectures on Symplectic Manifolds , 1977 .

[60]  M. Muñoz-Lecanda,et al.  New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries , 2019, 1907.02947.

[61]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[62]  On the geometry of multisymplectic manifolds , 1999 .

[63]  Lagrangian submanifolds in k-symplectic settings , 2012, 1202.3964.

[64]  M. D. Le'on,et al.  Unified Lagrangian‐Hamiltonian Formalism for Contact Systems , 2020, Fortschritte der Physik.

[65]  Lagrangian submanifolds and higher-order mechanical systems , 1989 .

[66]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .