Contact Dynamics versus Legendrian and Lagrangian Submanifolds
暂无分享,去创建一个
Juan Carlos Marrero | Manuel Lainz Valc'azar | Manuel de Le'on | Ougul Esen | J. Marrero | O. Esen | M. D. Le'on
[1] J. Marrero,et al. Reduced dynamics and Lagrangian submanifolds of symplectic manifolds , 2014, 1402.2847.
[2] S. Benenti. Hamiltonian Structures and Generating Families , 2011 .
[3] A. Weinstein. The symplectic “category” , 1982 .
[4] Miroslav Grmela. Multiscale Thermodynamics , 2021, Entropy.
[5] Miroslav Grmela,et al. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .
[6] A. Banyaga. The Structure of Classical Diffeomorphism Groups , 1997 .
[7] Kaizhi Wang,et al. Implicit variational principle for contact Hamiltonian systems , 2017 .
[8] Mark J. Gotay,et al. Presymplectic manifolds and the Dirac-Bergmann theory of constraints , 1978 .
[9] M. Grmela,et al. Multiscale Thermo-Dynamics , 2018 .
[10] Ray Skinner,et al. Generalized Hamiltonian dynamics. I. Formulation on T*Q⊕TQ , 1983 .
[12] M. Salgado,et al. On the k-symplectic, k-cosymplectic and multisymplectic formalisms of classical field theories , 2007, 0705.4364.
[13] 矢野 健太郎,et al. Tangent and cotangent bundles : differential geometry , 1973 .
[14] Hans Christian Öttinger,et al. General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .
[15] A. Bravetti. Contact geometry and thermodynamics , 2019, International Journal of Geometric Methods in Modern Physics.
[16] Tsuyoshi Murata,et al. {m , 1934, ACML.
[17] Tulczyjew’s triplet for lie groups III: Higher order dynamics and reductions for iterated bundles , 2021, Theoretical and Applied Mechanics.
[18] Geometry of multisymplectic Hamiltonian first order field theories , 2000, math-ph/0004005.
[19] Peter Salamon,et al. Contact structure in thermodynamic theory , 1991 .
[20] W. Tulczyjew,et al. Integrability of implicit differential equations , 1995 .
[21] Manuel Lainz Valc'azar,et al. Contact Hamiltonian systems , 2018, Journal of Mathematical Physics.
[22] James D. Meiss. Hamiltonian systems , 2007, Scholarpedia.
[23] D. D. Diego,et al. Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms , 1997 .
[24] M. de León,et al. Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems , 2016, 1612.06224.
[25] C. Godbillon. Géométrie différentielle et mécanique analytique , 1969 .
[26] J. Sniatycki,et al. Generating Forms of Lagrangian Submanifolds , 1972 .
[27] M. D. Le'on,et al. A Hamilton-Jacobi theory for implicit differential systems , 2017, 1708.01586.
[28] P. Guha,et al. On Geometry of Schmidt Legendre Transformation , 2016, 1607.08348.
[29] Paul Adrien Maurice Dirac. Generalized Hamiltonian dynamics , 1950 .
[30] Florio M. Ciaglia,et al. Contact manifolds and dissipation, classical and quantum , 2018, Annals of Physics.
[31] Darryl D. Holm,et al. Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .
[32] R. Bains,et al. Methods of differential geometry in analytical mechanics , 1992 .
[33] Alessandro Bravetti,et al. Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.
[34] K. Grabowska,et al. The Tulczyjew triple in mechanics on a Lie group , 2016, 1602.02600.
[35] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[36] W. M. Tulczyjew. The Legendre transformation , 1977 .
[37] B. Lawruk,et al. Special symplectic spaces , 1975 .
[38] A. Simoes,et al. Contact geometry for simple thermodynamical systems with friction , 2020, Proceedings of the Royal Society A.
[39] Andrew James Bruce,et al. Remarks on contact and Jacobi geometry , 2015, 1507.05405.
[40] M. D. Le'on,et al. METHODS OF DIFFERENTIAL GEOMETRY IN CLASSICAL FIELD THEORIES: K-SYMPLECTIC AND K-COSYMPLECTIC APPROACHES , 2014, 1409.5604.
[41] Tulczyjew Triples in Higher Derivative Field Theory , 2014, 1406.6503.
[42] Manuel Lainz Valc'azar,et al. Singular Lagrangians and precontact Hamiltonian systems , 2019, International Journal of Geometric Methods in Modern Physics.
[43] A. Kirillov. LOCAL LIE ALGEBRAS , 1976 .
[44] M. D. Le'on,et al. Higher-order contact mechanics , 2020, 2009.12160.
[45] O. Esen,et al. Tulczyjew's Triplet for Lie Groups II: Dynamics , 2015, 1503.06566.
[46] C. Marle. On Jacobi Manifolds and Jacobi Bundles , 1991 .
[47] J. Grabowski,et al. Tulczyjew Triples: From Statics to Field Theory , 2013, 1306.2744.
[48] K. Grabowska. A Tulczyjew triple for classical fields , 2011, 1109.2533.
[49] Kaizhi Wang,et al. Variational principle for contact Hamiltonian systems and its applications , 2017, Journal de Mathématiques Pures et Appliquées.
[50] Miroslav Grmela,et al. Contact Geometry of Mesoscopic Thermodynamics and Dynamics , 2014, Entropy.
[51] Pawel Urbanski,et al. A slow and careful Legendre transformation for singular Lagrangians , 1999 .
[52] O. Esen,et al. A Hamilton–Jacobi formalism for higher order implicit Lagrangians , 2019, Journal of Physics A: Mathematical and Theoretical.
[54] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[55] Marshall Baker,et al. Lectures on quantum mechanics , 2014, Quantum Information Processing.
[56] A. Bravetti,et al. Contact Hamiltonian Mechanics , 2016, 1604.08266.
[57] J. Grabowski,et al. GEOMETRY OF LAGRANGIAN AND HAMILTONIAN FORMALISMS IN THE DYNAMICS OF STRINGS , 2014, 1401.6970.
[58] C. M. Campos,et al. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds , 2011, 1110.4778.
[59] Alan Weinstein,et al. Lectures on Symplectic Manifolds , 1977 .
[60] M. Muñoz-Lecanda,et al. New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries , 2019, 1907.02947.
[61] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.
[62] On the geometry of multisymplectic manifolds , 1999 .
[63] Lagrangian submanifolds in k-symplectic settings , 2012, 1202.3964.
[64] M. D. Le'on,et al. Unified Lagrangian‐Hamiltonian Formalism for Contact Systems , 2020, Fortschritte der Physik.
[65] Lagrangian submanifolds and higher-order mechanical systems , 1989 .
[66] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .