Learnable Ranking Models for Automatic Text Summarization and Information Retrieval
暂无分享,去创建一个
Massih-Reza Amini | Patrick Gallinari | Nicolas Usunier | David Buffoni | Tuong-Vinh Truong | P. Gallinari | Nicolas Usunier | Massih-Reza Amini | David Buffoni | Tuong-Vinh Truong
[1] Rich Caruana,et al. An empirical evaluation of supervised learning in high dimensions , 2008, ICML '08.
[2] Emine Yilmaz,et al. Document selection methodologies for efficient and effective learning-to-rank , 2009, SIGIR.
[3] Yoram Singer,et al. Boosting for document routing , 2000, CIKM '00.
[4] Jon Kleinberg,et al. Authoritative sources in a hyperlinked environment , 1999, SODA '98.
[5] Tao Qin,et al. LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .
[6] Tao Qin,et al. Feature selection for ranking , 2007, SIGIR.
[7] Massih-Reza Amini,et al. A boosting algorithm for learning bipartite ranking functions with partially labeled data , 2008, SIGIR '08.
[8] Francine Chen,et al. A trainable document summarizer , 1995, SIGIR '95.
[9] Tie-Yan Liu,et al. Directly optimizing evaluation measures in learning to rank , 2008, SIGIR.
[10] Tie-Yan Liu,et al. Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.
[11] Mounia Lalmas,et al. Learning-based summarisation of XML documents , 2007, Information Retrieval.
[12] Filip Radlinski,et al. A support vector method for optimizing average precision , 2007, SIGIR.
[13] Hang Li,et al. AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.
[14] Kevin Duh,et al. Learning to rank with partially-labeled data , 2008, SIGIR '08.
[15] François Laviolette,et al. A Selective Sampling Strategy for Label Ranking , 2006, ECML.
[16] Alexander J. Smola,et al. Direct Optimization of Ranking Measures , 2007, ArXiv.
[17] Massih-Reza Amini. Apprentissage automatique et recherche de l'information : application a l'extraction d'information de surface et au resume de texte , 2001 .
[18] Wei Chu,et al. New approaches to support vector ordinal regression , 2005, ICML.
[19] Yoram Singer,et al. An Efficient Boosting Algorithm for Combining Preferences by , 2013 .
[20] Cynthia Rudin,et al. Margin-Based Ranking Meets Boosting in the Middle , 2005, COLT.
[21] Yoram Singer,et al. Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..
[22] Wei Chu,et al. Support Vector Ordinal Regression , 2007, Neural Computation.
[23] Thomas Hofmann,et al. Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..
[24] P. Gallinari,et al. A Data-dependent Generalisation Error Bound for the AUC , 2005 .
[25] Tong Zhang,et al. Subset Ranking Using Regression , 2006, COLT.
[26] W. Bruce Croft,et al. Direct Maximization of Rank-Based Metrics for Information Retrieval , 2005 .
[27] Nguyen Tuong Vinh Truong. Apprentissage de fonctions d'ordonnancement avec peu d'exemples étiquetés : une application au routage d'information, au résumé de textes et au filtrage collaboratif , 2009 .
[28] Dan Roth,et al. Generalization Bounds for the Area Under the ROC Curve , 2005, J. Mach. Learn. Res..
[29] Tie-Yan Liu,et al. Listwise approach to learning to rank: theory and algorithm , 2008, ICML '08.
[30] John Langford,et al. Robust reductions from ranking to classification , 2007, Machine Learning.
[31] Chris D. Paice,et al. The identification of important concepts in highly structured technical papers , 1993, SIGIR.
[32] Thorsten Joachims,et al. A support vector method for multivariate performance measures , 2005, ICML.
[33] Wei Chu,et al. Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..