Learnable Ranking Models for Automatic Text Summarization and Information Retrieval

[1]  Rich Caruana,et al.  An empirical evaluation of supervised learning in high dimensions , 2008, ICML '08.

[2]  Emine Yilmaz,et al.  Document selection methodologies for efficient and effective learning-to-rank , 2009, SIGIR.

[3]  Yoram Singer,et al.  Boosting for document routing , 2000, CIKM '00.

[4]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[5]  Tao Qin,et al.  LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .

[6]  Tao Qin,et al.  Feature selection for ranking , 2007, SIGIR.

[7]  Massih-Reza Amini,et al.  A boosting algorithm for learning bipartite ranking functions with partially labeled data , 2008, SIGIR '08.

[8]  Francine Chen,et al.  A trainable document summarizer , 1995, SIGIR '95.

[9]  Tie-Yan Liu,et al.  Directly optimizing evaluation measures in learning to rank , 2008, SIGIR.

[10]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[11]  Mounia Lalmas,et al.  Learning-based summarisation of XML documents , 2007, Information Retrieval.

[12]  Filip Radlinski,et al.  A support vector method for optimizing average precision , 2007, SIGIR.

[13]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[14]  Kevin Duh,et al.  Learning to rank with partially-labeled data , 2008, SIGIR '08.

[15]  François Laviolette,et al.  A Selective Sampling Strategy for Label Ranking , 2006, ECML.

[16]  Alexander J. Smola,et al.  Direct Optimization of Ranking Measures , 2007, ArXiv.

[17]  Massih-Reza Amini Apprentissage automatique et recherche de l'information : application a l'extraction d'information de surface et au resume de texte , 2001 .

[18]  Wei Chu,et al.  New approaches to support vector ordinal regression , 2005, ICML.

[19]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[20]  Cynthia Rudin,et al.  Margin-Based Ranking Meets Boosting in the Middle , 2005, COLT.

[21]  Yoram Singer,et al.  Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..

[22]  Wei Chu,et al.  Support Vector Ordinal Regression , 2007, Neural Computation.

[23]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[24]  P. Gallinari,et al.  A Data-dependent Generalisation Error Bound for the AUC , 2005 .

[25]  Tong Zhang,et al.  Subset Ranking Using Regression , 2006, COLT.

[26]  W. Bruce Croft,et al.  Direct Maximization of Rank-Based Metrics for Information Retrieval , 2005 .

[27]  Nguyen Tuong Vinh Truong Apprentissage de fonctions d'ordonnancement avec peu d'exemples étiquetés : une application au routage d'information, au résumé de textes et au filtrage collaboratif , 2009 .

[28]  Dan Roth,et al.  Generalization Bounds for the Area Under the ROC Curve , 2005, J. Mach. Learn. Res..

[29]  Tie-Yan Liu,et al.  Listwise approach to learning to rank: theory and algorithm , 2008, ICML '08.

[30]  John Langford,et al.  Robust reductions from ranking to classification , 2007, Machine Learning.

[31]  Chris D. Paice,et al.  The identification of important concepts in highly structured technical papers , 1993, SIGIR.

[32]  Thorsten Joachims,et al.  A support vector method for multivariate performance measures , 2005, ICML.

[33]  Wei Chu,et al.  Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..