Vapor-liquid equilibria and volumetric properties for new working fluid ([C6H11N2][HSO4] + LiBr + H2O) and corresponding binary systems at different temperatures and ambient pressure

Abstract Vapor-liquid equilibrium of aqueous [C 6 H 11 N 2 ][HSO 4 ] and LiBr systems and the ternary ([C 6 H 11 N 2 ][HSO 4 ] + LiBr + H 2 O) system are studied at T  = 298.15 K. Isopiestic method applied to obtain the water activity, osmotic coefficient, activity coefficient and vapor pressure. For binary mixtures, the different models such as Pitzer, Pitzer – Archer and Modified- Pitzer models are fitted to the osmotic coefficients data, and for the studied ternary system, we used the Scatchard's natural electrolyte model to correlate the osmotic coefficients values at T  = 298.15 K. The effect of [C 6 H 11 N 2 ][HSO 4 ] on volumetric properties of aqueous LiBr solutions is considered. Limiting apparent molar expansibilities are obtained and McMillan-Meyer parameters are evaluated.

[1]  Hamid Reza Rafiee,et al.  The study of thermodynamic properties of the ternary (1-ethyl-3-methylimidazolium hydrogen sulfate + lithium chloride + water) system and corresponding binary systems at different temperatures and ambient pressure , 2016 .

[2]  J. Rodríguez,et al.  Thermodynamic evaluation of new absorbent mixtures of lithium bromide and organic salts for absorption refrigeration machines , 2006 .

[3]  G. Kell Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale , 1975 .

[4]  Felix Ziegler,et al.  Recent developments and future prospects of sorption heat pump systems , 1999 .

[5]  K. R. Seddon,et al.  Ionic liquids: a taste of the future. , 2003, Nature materials.

[6]  L. Hepler Thermal expansion and structure in water and aqueous solutions , 1969 .

[7]  Donald G. Miller Activity Coefficient Derivatives of Ternary Systems Based on Scatchard’s Neutral Electrolyte Description , 2007 .

[8]  A. K. Mishra,et al.  Apparent molar volumes of some amino acids and peptides in aqueous urea solutions , 1983 .

[9]  Kenneth S. Pitzer,et al.  Activity Coefficients in Electrolyte Solutions , 2017 .

[10]  R. Bhat,et al.  Thermodynamic studies of transfer of some amino acids and peptides from water to aqueous glucose and sucrose solutions at 298.15 K , 1988 .

[11]  D. G. Archer,et al.  The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes , 1990 .

[12]  G. Sadowski,et al.  Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT , 2014 .

[13]  Mohammed Taghi Zafarani-Moattar,et al.  The study of vapor–liquid equilibria of 1-ethyl-3-methyl imidazolium chloride and 1-butyl-3-methyl imidazolium chloride in lithium bromide aqueous solutions and their corresponding binary systems at 298.15K. , 2013 .

[14]  C. Jolicoeur,et al.  Apparent molal volumes of alkali halides in water at 25.deg.. Influence of structural hydration interactions on the concentration dependence , 1969 .

[15]  Reinhard Radermacher,et al.  Absorption Chillers and Heat Pumps , 1996 .

[16]  Dapeng Hu,et al.  Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair , 2011 .

[17]  G. Perron,et al.  Thermodynamics of the salting effect; free energies, enthalpies, entropies, heat capacities, and volumes of the ternary systems electrolyte–alcohol–water at 25 °C , 1978 .

[18]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[19]  Wolfgang Wagner,et al.  International Equations for the Saturation Properties of Ordinary Water Substance , 1987 .

[20]  D. Mihov,et al.  Investigation of the Aqueous Lithium and Nickel Selenate System , 1998 .

[21]  Yoshiaki Takahashi,et al.  Abnormal viscosity increment observed for an ionic liquid by dissolving lithium chloride. , 2008, Journal of Physical Chemistry B.

[22]  Liangyu Shi,et al.  ABSORPTION REFRIGERATION CYCLE UTILIZING A NEW WORKING PAIR OF IONIC LIQUID TYPE , 2010 .

[23]  W. F. Stoecker,et al.  Refrigeration and air conditioning , 1958 .

[24]  D. G. Archer Thermodynamic Properties of the NaBr+H2O System , 1991 .

[25]  G. Iglesias-Silva,et al.  Osmotic and Activity Coefficients Using a Modified Pitzer Equation for Strong Electrolytes 1:1 and 1:2 at 298.15 K , 2002 .

[26]  L. André,et al.  A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 °C , 2015, American Journal of Science.

[27]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[28]  H. Rafiee,et al.  The study of volumetric, acoustic and transport properties of ionic liquid, 1-butyl-3-methyl imidazolium chloride [Bmim][Cl] in aqueous lithium bromide solutions at T = 298.15–318.15 K , 2014 .

[29]  Huen Lee,et al.  Vapor pressures and vapor-liquid equilibria of the 2,2,2-trifluoroethanol + quinoline system , 2003 .

[30]  H. Cabezas,et al.  An improved isopiestic method to determine activities in multicomponent mixtures , 1990 .

[31]  G. Scatchard OSMOTIC COEFFICIENTS AND ACTIVITY COEFFICIENTS IN MIXED ELECTROLYTE SOLUTIONS , 1961 .

[32]  Li Jing,et al.  Vapor Pressure Measurement of the Ternary Systems H2O + LiBr + [Dmim]Cl, H2O + LiBr + [Dmim]BF4, H2O + LiCl + [Dmim]Cl, and H2O + LiCl + [Dmim]BF4 , 2011 .

[33]  H. Rafiee,et al.  Study of Apparent Molar Volumes for Ionic Liquid, 1-Ethyl-3-methyl Imidazolium Chloride in Aqueous Lithium Nitrate, Lithium Bromide, and Lithium Chloride Solutions at Temperatures (298.15 to 318.15) K , 2015 .

[34]  Zongchang Zhao,et al.  Thermodynamic properties of a new working pair: 1-Ethyl-3-methylimidazolium ethylsulfate and water , 2010 .

[35]  W. Hamer,et al.  Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C , 1972 .

[36]  O. Redlich,et al.  The Molal Volumes of Electrolytes , 1964 .

[37]  Andrei G. Fedorov,et al.  Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid , 2012 .

[38]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[39]  H. Hasse,et al.  Temperature Dependence of the Density of Aqueous Alkali Halide Salt Solutions by Experiment and Molecular Simulation , 2014 .

[40]  C. Christov,et al.  Study of (m1LiX + m2CaX2)(aq) wheremidenotes molality andXdenotes Cl, or Br at the temperature 298.15 K , 2000 .

[41]  C. Machielsen,et al.  Thermophysical properties of the trifluoroethanol-pyrrolidone system for absorption heat transformers , 1993 .

[42]  J. Gmehling,et al.  Experimental determination and correlation of liquid density data of electrolyte mixtures containing water or methanol , 2003 .

[43]  C. Christov Thermodynamic study of (b1LiBr +b2MgBr2)(aq), wherebdenotes molality, at the temperature 348.15K , 1995 .

[44]  E. Clarke,et al.  Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C , 1985 .

[45]  C. Balarew,et al.  Investigation of the aqueous lithium and magnesium halide systems , 1994 .

[46]  Walter J. Hamer,et al.  Isotonic Solutions. I. The Chemical Potential of Water in Aqueous Solutions of Sodium Chloride, Potassium Chloride, Sulfuric Acid, Sucrose, Urea and Glycerol at 25°1 , 1938 .