Assimilation de données images pour la personnalisation d'un modèle électromécanique du coeur

Les donnees cliniques disponibles pour le diagnostic et la planification de therapies sont de plus en plus variees et complexes, ce qui apporte des informations plus riches, mais rend la tâche du medecin difficile. Les modeles informatiques de cœur peuvent integrer et analyser ces donnees en s'adaptant a chaque patient de maniere a proposer au medecin une vue integree ainsi que des parametres intrinseques. Cependant, il faut pour cela mettre en place des methodes d'ajustement automatique de ces modeles mathematiques aux donnees du patient. Dans cette these, nous proposons une methodologie pour personnaliser un modele electromecanique a partir de sequences temporelles d'images volumiques telles que des sequences cine-IRM ou scanner. Cette personnalisation consiste en l'estimation de l'etat (position/vitesse) et des parametres electriques et mecaniques du modele electromecanique. Nous nous interessons ici a l'estimation du mouvement cardiaque et des parametres de contractilite du modele electromecanique. Dans un premier temps, la modelisation des differentes phases cardiaques a ete amelioree et une etude de sensibilite a ete effectuee. Puis, les approches de segmentation et de suivi du mouvement par modeles deformables ont ete generalisees en couplant un modele deformable proactif avec des sequences d'images 3D. Cette methode est evaluee sur des donnees synthetiques et appliquee a des sequences cine-IRM ou scanner. Enfin, une methode d'estimation automatique des parametres de contractilite a partir de sequences d'images 3D est proposee, la principale difficulte provenant des non-linearites liees aux changements de phases. La methode proposee est fondee sur l'assimilation de donnees variationnelle et le gradient du critere d'erreur est calcule a l'aide de la methode de l'etat adjoint. Cette methode est evaluee sur des donnees synthetiques avant d'etre appliquee a des cine-IRM cliniques. Cette these pose des bases de la personnalisation du modele electromecanique du cœur et ouvre des perspectives pour l'optimisation des traitements selon le patient considere.

[1]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[2]  Y Rudy,et al.  Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. , 2000, Biophysical journal.

[3]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[4]  Abbas Samani,et al.  MR elastography of the human heart: Noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations , 2009, Magnetic resonance in medicine.

[5]  K Sagawa,et al.  Translation of Otto Frank's paper "Die Grundform des Arteriellen Pulses" Zeitschrift für Biologie 37: 483-526 (1899). , 1990, Journal of molecular and cellular cardiology.

[6]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[7]  Maxime Sermesant,et al.  Modèle électromécanique du coeur pour l'analyse d'image et la simulation , 2003 .

[8]  J. Debatin,et al.  MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. , 2001, Radiology.

[9]  Hervé Delingette,et al.  Parameter Estimation of a 3D Cardiac Electrophysiology Model Including the Restitution Curve Using Optical and MR Data , 2009 .

[10]  Mario Paruggia,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2006 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Hervé Delingette,et al.  Coupled Personalisation of Electrophysiology Models for Simulation of Induced Ischemic Ventricular Tachycardia , 2010, MICCAI.

[13]  Richard D. White,et al.  ACR practice guideline for the performance and interpretation of cardiac magnetic resonance imaging (MRI). , 2006, Journal of the American College of Radiology : JACR.

[14]  Hervé Delingette,et al.  Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart , 2006, IEEE Transactions on Biomedical Engineering.

[15]  B. Taccardi,et al.  Potential Distributions Generated By Point Stimulation in a Myocardial Volume: , 1993, Journal of cardiovascular electrophysiology.

[16]  R. Lathe Phd by thesis , 1988, Nature.

[17]  Simon R. Arridge,et al.  Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy , 2008, IEEE Transactions on Medical Imaging.

[18]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[19]  A L Bardou,et al.  Modeling of cardiac electrophysiological mechanisms: from action potential genesis to its propagation in myocardium. , 1996, Critical reviews in biomedical engineering.

[20]  Hervé Delingette,et al.  Cardiac Motion Estimation Using a ProActive Deformable Model: Evaluation and Sensitivity Analysis , 2010, STACOM/CESC.

[21]  Y. Rouchdy,et al.  A nonlinear elastic deformable template for soft structure segmentation: application to the heart segmentation in MRI , 2007 .

[22]  F. L. Dimet,et al.  Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods , 2009 .

[23]  Sandra Reynolds Tortora Gerard J. Grabowski Principes d'anatomie et de physiologie , 2001 .

[24]  Coordonné par F. Pinet,et al.  Biologie et pathologie du cœur et des vaisseaux , 2003 .

[25]  M Fink,et al.  A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. , 1999, The Journal of the Acoustical Society of America.

[26]  P. Hunter,et al.  A quantitative analysis of cardiac myocyte relaxation: a simulation study. , 2006, Biophysical journal.

[27]  Y. Rudy,et al.  Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure. , 1995, Circulation.

[28]  Richard J. Beach,et al.  Proceedings of the 15th annual conference on Computer graphics and interactive techniques , 1988, International Conference on Computer Graphics and Interactive Techniques.

[29]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[30]  Sébastien Ourselin,et al.  Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images , 2000, MICCAI.

[31]  Ethan J. Halpern Clinical Cardiac CT: Anatomy and Function , 2008 .

[32]  Alistair A. Young,et al.  Passive Ventricular Mechanics Modelling Using MRI of Structure and Function , 2008, MICCAI.

[33]  Hervé Delingette,et al.  An Integrated Platform for Dynamic Cardiac Simulation and Image Processing: Application to Personalised Tetralogy of Fallot Simulation , 2008, VCBM.

[34]  L. Saul Cardiac Resynchronization Therapy , 2007, Critical care nursing quarterly.

[35]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[36]  YingLiang Ma,et al.  Anisotropic Wave Propagation and Apparent Conductivity Estimation in a Fast Electrophysiological Model: Application to XMR Interventional Imaging , 2007, MICCAI.

[37]  F B Sachse,et al.  HYPERELASTIC DESCRIPTION OF ELASTOMECHANIC PROPERTIES OF THE HEART: A NEW MATERIAL LAW AND ITS APPLICATION , 2002, Biomedizinische Technik. Biomedical engineering.

[38]  Johan Montagnat,et al.  4D deformable models with temporal constraints: application to 4D cardiac image segmentation , 2005, Medical Image Anal..

[39]  L. Shaw,et al.  Journal of Cardiovascular Magnetic Resonance Clinical Indications for Cardiovascular Magnetic Resonance (cmr): Consensus Panel Report , 2022 .

[40]  J. Humphrey,et al.  Determination of a constitutive relation for passive myocardium: II. Parameter estimation. , 1990, Journal of biomechanical engineering.

[41]  Arturo Gil Pinto,et al.  Universit e Montpellier 2 Sciences et techniques du Languedoc , 2007 .

[42]  Hervé Delingette,et al.  Cardiac Electrophysiology Model Adjustment Using the Fusion of MR and Optical Imaging , 2008, MICCAI.

[43]  Holger Schmid Passive myocardial mechanics : constitutive laws and materials parameter estimation , 2006 .

[44]  Hervé Delingette,et al.  Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study , 2009, Medical Image Anal..

[45]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[46]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[47]  Demetri Terzopoulos,et al.  A finite element model for 3D shape reconstruction and nonrigid motion tracking , 1993, 1993 (4th) International Conference on Computer Vision.

[48]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[49]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[50]  Robert A. O'Rourke,et al.  Hurst's The Heart: Manual of Cardiology , 2001 .

[51]  J. Ophir,et al.  Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues , 1991, Ultrasonic imaging.

[52]  D. Chapelle,et al.  Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems , 2011 .

[53]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[54]  Jeffrey A. Edlund,et al.  Axel , 2009, IEEE Robotics & Automation Magazine.

[55]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[56]  Eric Voth The inverse problem of electrocardiography: industrial solutions and simulations , 2005 .

[57]  Hervé Delingette,et al.  Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy , 2009, FIMH.

[58]  Christos Davatzikos,et al.  Biomechanically-Constrained 4D Estimation of Myocardial Motion , 2009, MICCAI.

[59]  Jagmeet P Singh,et al.  Enhancing the response to cardiac resynchronization therapy: is it time to individualize the left ventricular pacing site? , 2010, Journal of the American College of Cardiology.

[60]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[61]  P. Hunter,et al.  The analysis of cardiac function: a continuum approach. , 1988, Progress in biophysics and molecular biology.