Optimal maximal and maximal prefix codes equivalent to Huffman codes

Novel maximal coding and maximal prefix coding are introduced. We show that for finite source alphabets all Huffman codes are optimal maximal codes and optimal maximal prefix codes. Conversely, optimal maximal codes or optimal maximal prefix codes need not to be Huffman codes. For any maximal prefix code C, however, there exists some information source I such that C is exactly a Huffman code for I. And, for any maximal code C, there exists some information source I such that C is equivalent to a Huffman code for I. In other words, the class of Huffman codes coincides with the one of maximal prefix codes or maximal codes. Additionally, a case study of data compression is investigated. The optimal maximal coding and maximal prefix coding are used not only for statistical modeling but also for dictionary methods. Finally, it is proven that given an original file and a corresponding encoded file by the maximal prefix coding, the complexity of guessing the maximal prefix code is NP-complete.

[1]  Shmuel Tomi Klein,et al.  Storing text retrieval systems on CD-ROM: compression and encryption considerations , 1989, SIGIR '89.

[2]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[3]  Frank Rubin Cryptographic Aspects of Data Compression Codes , 1979, Cryptologia.

[4]  Weijia Jia,et al.  Optimal maximal encoding different from Huffman encoding , 2001, Proceedings International Conference on Information Technology: Coding and Computing.

[5]  Steven Roman Introduction to coding and information theory , 1997, Undergraduate texts in mathematics.

[6]  Marcel Paul Schützenberger,et al.  On Synchronizing Prefix Codes , 1967, Inf. Control..

[7]  Leon Gordon Kraft,et al.  A device for quantizing, grouping, and coding amplitude-modulated pulses , 1949 .

[8]  Ronald L. Rivest,et al.  On breaking a Huffman code , 1996, IEEE Trans. Inf. Theory.

[9]  Vahid Tarokh,et al.  Existence of optimal prefix codes for infinite source alphabets , 1997, IEEE Trans. Inf. Theory.

[10]  Jeffrey Scott Vitter,et al.  Design and analysis of dynamic Huffman codes , 1987, JACM.

[11]  Shawmin Lei,et al.  An entropy coding system for digital HDTV applications , 1991, IEEE Trans. Circuits Syst. Video Technol..

[12]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[13]  Umberto Eco,et al.  Theory of Codes , 1976 .

[14]  Douglas W. Jones,et al.  Application of splay trees to data compression , 1988, CACM.

[15]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[16]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .