Quasicrystalline Weyl points and dense Fermi-Bragg arcs

We introduce a general mechanism for obtaining Weyl points in a stack of 2D quasicrystals, which can be extended to any stack of aperiodic layers. We do so by driving a topological phase transition with the vertical crystal-momentum as the tuning parameter, which leads to gap closures at the critical points sourcing Berry curvature. To illustrate, we use a simple 3D generalization of the Qi-Wu-Zhang model defined on a Penrose quasicrystal. The presence of Weyl points is established via the local Chern marker, projected band structure and density of states. Interestingly, we uncover an analogue of Fermi arcs in the quasicrystalline setting, which we deem Fermi-Bragg arcs, densely distributed lines connecting the band degeneracies and indexed by the Bragg peaks. Signatures of such surface states in quantum oscillations and the prospect of a fully quasicrystalline Weyl system are also discussed. The flexibility of our proposal brings new opportunities for realizing other gapless topological phases in aperiodic systems, paving the way for a significantly expanded role for topological band theory.

[1]  Weicheng Chen,et al.  Chiral photonic topological states in Penrose quasicrystals. , 2023, Optics letters.

[2]  A. Kildishev,et al.  Topological electromagnetic waves in dispersive and lossy plasma crystals , 2023, Scientific reports.

[3]  A. Cerjan,et al.  An operator-based approach to topological photonics , 2022, 2023 Conference on Lasers and Electro-Optics (CLEO).

[4]  S. Fan,et al.  Light control with Weyl semimetals , 2022, eLight.

[5]  T. Peng,et al.  Chern insulator in a hyperbolic lattice , 2022, Physical Review B.

[6]  Hermann Schulz-Baldes,et al.  Invariants of disordered semimetals via the spectral localizer , 2021, EPL (Europhysics Letters).

[7]  Huaqing Huang,et al.  Topological states in quasicrystals , 2021, Frontiers of Physics.

[8]  A. Kokalj,et al.  Two-dimensional oxide quasicrystal approximants with tunable electronic and magnetic properties. , 2021, Nanoscale.

[9]  X. Wan,et al.  Exhaustive construction of effective models in 1651 magnetic space groups , 2021, Physical Review B.

[10]  Yugui Yao,et al.  Encyclopedia of emergent particles in three-dimensional crystals. , 2021, Science bulletin.

[11]  A. Zettl,et al.  Layer-dependent topological phase in a two-dimensional quasicrystal and approximant , 2020, Proceedings of the National Academy of Sciences.

[12]  V. Mastropietro Stability of Weyl semimetals with quasiperiodic disorder , 2020, Physical Review B.

[13]  Jin-Hua Gao,et al.  Higher-Order Topological Insulators in Quasicrystals. , 2019, Physical review letters.

[14]  Guancong Ma,et al.  Topological phases in acoustic and mechanical systems , 2019, Nature Reviews Physics.

[15]  D. Vanderbilt Berry Phases in Electronic Structure Theory , 2018 .

[16]  D. Deng,et al.  Topological Amorphous Metals. , 2018, Physical review letters.

[17]  J. Dalibard,et al.  Topological bands for ultracold atoms. , 2018, Reviews of modern physics.

[18]  D. Huse,et al.  Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials. , 2018, Physical review letters.

[19]  B. Liang,et al.  Experimental Demonstration of Acoustic Chern Insulators. , 2018, Physical review letters.

[20]  V. Shenoy,et al.  Topological Insulators in Amorphous Systems. , 2017, Physical review letters.

[21]  J. Zi,et al.  Electromagnetic scattering laws in Weyl systems , 2017, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[22]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[23]  T. Loring,et al.  Finite volume calculation of $K$-theory invariants , 2017, 1701.07455.

[24]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[25]  D. Huse,et al.  Rare region induced avoided quantum criticality in disordered three-dimensional Dirac and Weyl semimetals , 2016, 1602.02742.

[26]  D. Kleckner,et al.  Topological mechanics of gyroscopic metamaterials , 2015, Proceedings of the National Academy of Sciences.

[27]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[28]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[29]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[30]  P. Gaspard,et al.  Topological Hofstadter insulators in a two-dimensional quasicrystal , 2014, 1412.0571.

[31]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[32]  D. Basov,et al.  Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity , 2013, 1306.4565.

[33]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[34]  Raffaele Resta,et al.  Mapping topological order in coordinate space , 2011, 1111.5697.

[35]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[36]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[37]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[38]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[39]  M. B. Hastings,et al.  Disordered topological insulators via C*-algebras , 2010, 1005.4883.

[40]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[41]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[42]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[43]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[44]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[45]  X. Qi,et al.  Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors , 2005, cond-mat/0505308.

[46]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[47]  John W. Cahn,et al.  Quasicrystals , 2001, Journal of research of the National Institute of Standards and Technology.

[48]  A. Inoue,et al.  Stable Decagonal Quasicrystal in an Al–Mn–Fe–Ge System , 1997 .

[49]  Ueda,et al.  Electronic properties of the Penrose lattice. I. Energy spectrum and wave functions. , 1991, Physical review. B, Condensed matter.

[50]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[51]  O. Entin-Wohlman,et al.  Penrose tiling approximants , 1988 .

[52]  Levine,et al.  Quasicrystals. I. Definition and structure. , 1986, Physical review. B, Condensed matter.

[53]  Bendersky Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. , 1985, Physical review letters.

[54]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[55]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[56]  H. Weyl,et al.  Elektron und Gravitation. I , 1929 .

[57]  de Ng Dick Bruijn,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .

[58]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .