The Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiology

[1]  B. Cummings,et al.  The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target , 2023, Frontiers in Microbiology.

[2]  C. Okafor,et al.  Bile acids and the gut microbiota: metabolic interactions and impacts on disease , 2022, Nature Reviews Microbiology.

[3]  Karthik Anantharaman,et al.  Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes , 2022, bioRxiv.

[4]  C. Jeon,et al.  Identification and Characterization of Major Bile Acid 7α-Dehydroxylating Bacteria in the Human Gut , 2022, mSystems.

[5]  M. Trauner,et al.  Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology , 2022, Nature Reviews Gastroenterology & Hepatology.

[6]  D. Artis,et al.  Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome , 2022, Cell.

[7]  C. Huttenhower,et al.  Human gut bacteria produce TH17-modulating bile acid metabolites , 2021, bioRxiv.

[8]  R. Kerby,et al.  Dominant Bacterial Phyla from the Human Gut Show Widespread Ability To Transform and Conjugate Bile Acids , 2021, mSystems.

[9]  B. Philipp,et al.  Degradation of Bile Acids by Soil and Water Bacteria , 2021, Microorganisms.

[10]  Sean M. Kearney,et al.  Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians , 2021, Nature.

[11]  Alexander S. Banks,et al.  A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases. , 2021, ACS chemical biology.

[12]  C. Huttenhower,et al.  A Bacterial Bile Acid Metabolite Modulates Treg Activity through the Nuclear Hormone Receptor NR4A1 , 2021, bioRxiv.

[13]  C. Trautwein,et al.  The gut bacterium Extibacter muris produces secondary bile acids and influences liver physiology in gnotobiotic mice , 2020, Gut microbes.

[14]  N. Segata,et al.  A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity , 2020, Nature Communications.

[15]  R. Hettich,et al.  Biogeography of microbial bile acid transformations along the murine gut , 2020, Journal of Lipid Research.

[16]  M. Fischbach,et al.  Computational genomic discovery of diverse gene clusters harbouring Fe-S flavoenzymes in anaerobic gut microbiota , 2020, Microbial genomics.

[17]  R. Barrangou,et al.  Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible (bai) Operon , 2020, Journal of bacteriology.

[18]  M. Fischbach,et al.  A metabolic pathway for bile acid dehydroxylation by the gut microbiome , 2019, bioRxiv.

[19]  Alexander S. Banks,et al.  Development of a Covalent Inhibitor of Gut Bacterial Bile Salt Hydrolases , 2019, bioRxiv.

[20]  A. Bleich,et al.  Gnotobiotics: Past, present and future , 2019, Laboratory animals.

[21]  Alvaro G. Hernandez,et al.  Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids , 2019, Applied and Environmental Microbiology.

[22]  T. Savidge,et al.  Role of Bile in Infectious Disease: the Gall of 7α-Dehydroxylating Gut Bacteria. , 2019, Cell chemical biology.

[23]  P. Hylemon,et al.  Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. , 2019, Cell chemical biology.

[24]  Kamir J. Hiam,et al.  Depletion of microbiome-derived molecules in the host using Clostridium genetics , 2018, Science.

[25]  M. Fischbach,et al.  Bile acid metabolites control Th17 and Treg cell differentiation , 2018, bioRxiv.

[26]  T. Kubasová,et al.  Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures , 2018, BMC Genomics.

[27]  P. Hylemon,et al.  Metabolism of hydrogen gases and bile acids in the gut microbiome , 2018, FEBS letters.

[28]  Alvaro G. Hernandez,et al.  Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T , 2018, Gut microbes.

[29]  J. Alves,et al.  Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704. , 2018, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[30]  Wei Jia,et al.  Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis , 2018, Nature Reviews Gastroenterology & Hepatology.

[31]  I. Cann,et al.  Targeted Synthesis and Characterization of a Gene Cluster Encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid Dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence , 2018, Applied and Environmental Microbiology.

[32]  Tetsuya Hayashi,et al.  Isolation of six novel 7-oxo- or urso-type secondary bile acid-producing bacteria from rat cecal contents. , 2017, Journal of bioscience and bioengineering.

[33]  G. Borisy,et al.  Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice , 2017, Proceedings of the National Academy of Sciences.

[34]  Rizlan Bernier-Latmani,et al.  Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model , 2016, Front. Cell. Infect. Microbiol..

[35]  S. O'keefe Diet, microorganisms and their metabolites, and colon cancer , 2016, Nature Reviews Gastroenterology &Hepatology.

[36]  P. Hylemon,et al.  The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases , 2016, Journal of Lipid Research.

[37]  Hanns-Ulrich Marschall,et al.  Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. , 2016, Cell metabolism.

[38]  Mitchell D. Miller,et al.  Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis , 2016, Proteins.

[39]  P. Hylemon,et al.  Consequences of bile salt biotransformations by intestinal bacteria , 2016, Gut microbes.

[40]  Michael A. Fischbach,et al.  A biosynthetic pathway for a prominent class of microbiota-derived bile acids , 2015, Nature chemical biology.

[41]  P. Dawson,et al.  Intestinal transport and metabolism of bile acids , 2015, Journal of Lipid Research.

[42]  J. Bajaj,et al.  The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics , 2015, Acta pharmaceutica Sinica. B.

[43]  Chris Sander,et al.  Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile , 2014, Nature.

[44]  M. Carey,et al.  Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. , 2014, World journal of gastroenterology.

[45]  A. Hofmann,et al.  Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades , 2014, Journal of Lipid Research.

[46]  S. Lesley,et al.  Structural and functional characterization of BaiA, an enzyme involved in secondary bile acid synthesis in human gut microbe , 2014, Proteins.

[47]  Joseph A. Sorg,et al.  Muricholic Acids Inhibit Clostridium difficile Spore Germination and Growth , 2013, PloS one.

[48]  G. Buck,et al.  Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens , 2013, Journal of Lipid Research.

[49]  I. Björkhem Five decades with oxysterols. , 2013, Biochimie.

[50]  F. Bäckhed,et al.  Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. , 2013, Cell metabolism.

[51]  R. Thauer The Wolfe cycle comes full circle , 2012, Proceedings of the National Academy of Sciences.

[52]  P. Hylemon,et al.  Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium , 2012, Journal of Lipid Research.

[53]  Tetsuya Hayashi,et al.  Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. , 2011, Gastroenterology.

[54]  M. Krasowski,et al.  Bile salts of vertebrates: structural variation and possible evolutionary significance[S] , 2010, Journal of Lipid Research.

[55]  P. Hylemon,et al.  Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases , 2008 .

[56]  Keiko Nagata,et al.  Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria , 2006, Lipids.

[57]  Dae-Joong Kang,et al.  Bile salt biotransformations by human intestinal bacteria Published, JLR Papers in Press, November 18, 2005. , 2006, Journal of Lipid Research.

[58]  A. Reuben The biliary cycle of Moritz Schiff , 2005, Hepatology.

[59]  M. Nencki Bemerkungen zu einer Bemerkung Pasteur's , 2005, Archiv für experimentelle Pathologie und Pharmakologie.

[60]  J. Sjövall Fifty years with bile acids and steroids in health and disease , 2004, Lipids.

[61]  J. Raufman,et al.  REVIEW: Activation of Muscarinic Receptor Signaling by Bile Acids: Physiological and Medical Implications , 2003, Digestive Diseases and Sciences.

[62]  P. Hylemon,et al.  Expression in Escherichia coli and characterization of a bile acid-inducible 3α-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708 , 1995, Current Microbiology.

[63]  S. Spring,et al.  Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. , 2004, International journal of systematic and evolutionary microbiology.

[64]  S. Kliewer,et al.  Complementary Roles of Farnesoid X Receptor, Pregnane X Receptor, and Constitutive Androstane Receptor in Protection against Bile Acid Toxicity* , 2003, Journal of Biological Chemistry.

[65]  Masataka Harada,et al.  A G Protein-coupled Receptor Responsive to Bile Acids* , 2003, The Journal of Biological Chemistry.

[66]  Henry,et al.  On the Composition of the Bile Acid Fraction of Rabbit Feces and the Isolation of a New Bile Acid : 3 a , 12 a-Dihydroxy-5 a-cholanic Acid BILE ACIDS AND STEROIDS 136 * , 2003 .

[67]  Bengt,et al.  Bile Acids and Steroids ON THE MECHANISM OF DEOXYCHOLIC ACID FORMATION IN THE RABBIT , 2003 .

[68]  Takao Nakamura,et al.  Identification of membrane-type receptor for bile acids (M-BAR). , 2002, Biochemical and biophysical research communications.

[69]  M. Haussler,et al.  Vitamin D Receptor As an Intestinal Bile Acid Sensor , 2002, Science.

[70]  E. Stellwag,et al.  Dehydroxylat ion of cholic acid and chenodeoxycholic acid by Clostridium leptum , 2002 .

[71]  T. Willson,et al.  The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Y. Benno,et al.  Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity. , 2001, International journal of systematic and evolutionary microbiology.

[73]  Y. Benno,et al.  Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. , 2000, International journal of systematic and evolutionary microbiology.

[74]  J. Reeve,et al.  Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanot , 2000, International journal of systematic and evolutionary microbiology.

[75]  P. Hylemon,et al.  Isolation and characterization of cholic acid 7alpha-dehydroxylating fecal bacteria from cholesterol gallstone patients. , 2000, Journal of hepatology.

[76]  K. Itoh,et al.  Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids In Vitro , 1999, Microbiology and immunology.

[77]  G. De Pauw,et al.  Formation of Hyodeoxycholic Acid from Muricholic Acid and Hyocholic Acid by an Unidentified Gram-Positive Rod Termed HDCA-1 Isolated from Rat Intestinal Microflora , 1999, Applied and Environmental Microbiology.

[78]  M. Makishima,et al.  Identification of a nuclear receptor for bile acids. , 1999, Science.

[79]  J. Lehmann,et al.  Bile acids: natural ligands for an orphan nuclear receptor. , 1999, Science.

[80]  Jasmine Chen,et al.  Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. , 1999, Molecular cell.

[81]  P. Hylemon,et al.  The bile acid-inducible baiF gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A hydrolase. , 1999, Journal of lipid research.

[82]  P. Hylemon,et al.  Assessment of fecal bacteria with bile acid 7 alpha-dehydroxylating activity for the presence of bai-like genes , 1997, Applied and environmental microbiology.

[83]  P. Hylemon,et al.  Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708 , 1996, Journal of bacteriology.

[84]  T. Nonaka,et al.  Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli. , 1996, Biochemistry.

[85]  P. Hylemon,et al.  Expression and characterization of a C24 bile acid 7 alpha-dehydratase from Eubacterium sp. strain VPI 12708 in Escherichia coli. , 1996, Journal of lipid research.

[86]  S. F. Baron,et al.  Expression of the bile acid-inducible NADH:flavin oxidoreductase gene of Eubacterium sp. VPI 12708 in Escherichia coli. , 1995, Biochimica et biophysica acta.

[87]  S. F. Baron,et al.  Characterization of the baiH gene encoding a bile acid-inducible NADH:flavin oxidoreductase from Eubacterium sp. strain VPI 12708 , 1993, Journal of bacteriology.

[88]  R. Tanner,et al.  Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. , 1993, International journal of systematic bacteriology.

[89]  A. Hofmann,et al.  Cholylsarcosine, a new bile acid analogue: metabolism and effect on biliary secretion in humans. , 1993, Gastroenterology.

[90]  J. Adams,et al.  The bile acid-inducible baiB gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase , 1992, Journal of bacteriology.

[91]  K. Einarsson,et al.  The plasma level of 7α‐hydroxy‐4‐cholesten‐3‐one reflects the activity of hepatic cholesterol 7α‐hydroxylase in man , 1991 .

[92]  T. Yoshimoto,et al.  Cloning and sequencing of the 7 alpha-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme , 1991, Journal of bacteriology.

[93]  P. Melone,et al.  Mechanism of intestinal 7 alpha-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product. , 1991, Journal of lipid research.

[94]  P. Hylemon,et al.  Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708 , 1990, Journal of bacteriology.

[95]  A. Batta,et al.  Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. , 1990, The Journal of biological chemistry.

[96]  J. Fitzpatrick Some of my best friends are , 1989 .

[97]  K. Einarsson,et al.  Mechanism of intestinal formation of deoxycholic acid from cholic acid in humans: evidence for a 3-oxo-delta 4-steroid intermediate. , 1989, Journal of lipid research.

[98]  I. Björkhem,et al.  Hepatic 7 alpha-dehydroxylation of bile acid intermediates, and its significance for the pathogenesis of cerebrotendinous xanthomatosis. , 1988, Journal of lipid research.

[99]  P. Hylemon,et al.  Biosynthesis of a novel bile acid nucleotide and mechanism of 7 alpha-dehydroxylation by an intestinal Eubacterium species. , 1987, The Journal of biological chemistry.

[100]  A. E. Ritchie,et al.  Clostridium scindens sp. nov., a Human Intestinal Bacterium with Desmolytic Activity on Corticoids , 1985 .

[101]  P. Hylemon,et al.  Characterization of †4-3-ketosteroid-5β-reductase and 3β-hydroxysteroid dehydrogenase in cell extracts of Clostridium innocuum , 1985 .

[102]  B. Wostmann,et al.  Lack of 7 alpha-dehydroxylation in gnotobiotic gerbils associated with an octaflora including Clostridium sordellii. , 1985, Progress in clinical and biological research.

[103]  H. König,et al.  Methanobacterium wolfei, sp. nov., a New Tungsten-Requiring, Thermophilic, Autotrophic Methanogen , 1984 .

[104]  R. Edenharder Dehydroxylation of cholic acid at C12 and epimerization at C5 and C7 by Bacteroides species. , 1984, Journal of steroid biochemistry.

[105]  E. Mosbach,et al.  Mode of action of steroid desmolase and reductases synthesized by Clostridium "scindens" (formerly Clostridium strain 19). , 1984, Journal of lipid research.

[106]  A. E. Ritchie,et al.  Biosynthesis of androgen from cortisol by a species of Clostridium recovered from human fecal flora. , 1984, The Journal of infectious diseases.

[107]  E. Mosbach,et al.  Inactivation of contraceptive steroid hormones by human intestinal clostridia , 1983, Journal of clinical microbiology.

[108]  B. White,et al.  Regulation of bile acid 7-dehydroxylase activity by NAD+ and NADH in cell extracts of Eubacterium species V.P.I. 12708. , 1983, Journal of lipid research.

[109]  I. Björkhem,et al.  Biosynthesis of cholestanol from intestinal 7 alpha-hydroxy-4-cholesten-3-one. , 1982, The Journal of biological chemistry.

[110]  B. White,et al.  Cofactor requiremets for 7 alpha-dehydroxylation of cholic and chenodeoxycholic acid in cell extracts of the intestinal anaerobic bacterium, Eubacterium species V.P.I. 13708. , 1981, Journal of lipid research.

[111]  H. Oda,et al.  Transformation of Bile Acids by Mixed Microbial Cultures from Human Feces and Bile Acid Transforming Activities of Isolated Bacterial Strains , 1981, Microbiology and immunology.

[112]  H. Oda,et al.  Isolation and characterization of thirteen intestinal microorganisms capable of 7 alpha-dehydroxylating bile acids , 1981, Applied and environmental microbiology.

[113]  B. White,et al.  7 alpha-Dehydroxylation of cholic acid by cell extracts of Eubacterium species V.P.I. 12708. , 1980, The American journal of clinical nutrition.

[114]  P. Hylemon,et al.  Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species , 1980, Steroids.

[115]  E. Stellwag,et al.  Characterization of 7-alpha-dehydroxylase in Clostridium leptum. , 1978, The American journal of clinical nutrition.

[116]  Ralph S. Wolfe,et al.  Acetobacterium, a New Genus of Hydrogen-Oxidizing, Carbon Dioxide-Reducing, Anaerobic Bacteria , 1977 .

[117]  L. Beretta,et al.  Activity on bile acids of a Clostridium bifermentans cell‐free extract , 1977, FEBS letters.

[118]  L. Beretta,et al.  On the mechanism of cholic acid 7α‐dehydroxylation by a Clostridium bifermentans cell‐free extract , 1977 .

[119]  T. Midtvedt Microbial bile acid transformation. , 1974, The American journal of clinical nutrition.

[120]  S. Hayakawa Microbiological transformation of bile acids. , 1973, Advances in lipid research.

[121]  S. Hayakawa,et al.  7alpha-dehydroxylation of cholic acid by Clostridium bifermentans strain ATCC 9714 and Clostridium sordellii strain NCIB 6929. , 1970, FEBS letters.

[122]  E. Mosbach,et al.  Bacterial 7-dehydroxylation of cholic acid and allocholic acid. , 1969, Journal of lipid research.

[123]  T. Midtvedt,et al.  Metabolism of cholic acid in germfree animals after the establishment in the intestinal tract of deconjugating and 7 alpha-dehydroxylating bacteria. , 2009, Acta pathologica et microbiologica Scandinavica.

[124]  R. Hirsch,et al.  Experimental cholelithiasis in the rabbit induced by cholestanol feeding: effect of neomycin treatment on bile composition and gallstone formation. , 1968, Journal of lipid research.

[125]  A. Kallner The transformation of deoxycholic acid into allodeoxycholic acid in the rat. Bile acids and steroids.174. , 1967, Acta chemica Scandinavica.

[126]  A. Kallner On the biosynthesis and metabolism of allodeoxycholic acid in the rat. Bile acids and steroids 175. , 1967, Acta chemica Scandinavica.

[127]  T. Midtvedt,et al.  ISOLATED FECAL MICROORGANISMS CAPABLE OF 7 α-DEHYDROXYLATING BILE ACIDS , 1966, The Journal of experimental medicine.

[128]  B. Samuelsson,et al.  TRANSFORMATION OF CHOLIC ACID IN VITRO BY CORYNEBACTERIUM SIMPLEX. BILE ACIDS AND STEROIDS. 132. , 1964, The Journal of biological chemistry.

[129]  B. Samuelsson,et al.  Isolation of prostaglandin E1 from human seminal plasma. Prostaglandins and related factors. 11. , 1962, The Journal of biological chemistry.

[130]  A. Norman,et al.  In vitro Formation of Deoxycholic and Lithocholic Acid by Human Intestinal Microorganisms.∗ † , 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[131]  B. Gustafsson,et al.  Comparison of Bile Acids in Intestinal Contents of Germfree and Conventional Rats.∗ † , 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[132]  S. Shah,et al.  Alteration of Bile Salts by Bacteria.∗ , 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[133]  J. Sjövall,et al.  Influence of E. coli infection on turnover and metabolism of cholic acid in germ-free rats. , 1960, Archives of biochemistry and biophysics.

[134]  B. Samuelsson Bile Acids and Steroids 96. ON THE MECHANISM OF THE BIOLOGICAL FORMATION OF DEOXYCHOLIC ACID FROM CHOLIC ACID , 1960 .

[135]  T. A. Bak,et al.  Formation of Lithocholic Acid from Chenodeoxycholic Acid in the Rat. Bile Acids and Steroids 103. , 1960 .

[136]  T. A. Bak,et al.  The Action of Intestinal Microorganisms on Bile Acids. Bile Acids and Steroids 101. , 1960 .

[137]  B. Samuelsson,et al.  Bile acids and steroids. LXXXIII. On the inter-conversion of cholic and deoxycholic acid in the rat. , 1959, The Journal of biological chemistry.

[138]  A. Norman,et al.  On the transformation and enterohepatic circulation of cholic acid in the rat: bile acids and steroids 68. , 1958, The Journal of biological chemistry.

[139]  S. Lindstedt,et al.  Turnover and Nature of Fecal Bile Acids in Germfree and Infected Rats Fed Cholic Acid-24-14C. Bile Acids and Steroids 41.∗ † , 1957, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[140]  E. Mosbach,et al.  Formation of gall stones in rabbits fed 3β-cholestanol ☆ , 1956 .

[141]  R. Grubb,et al.  Hydrolysis of conjugated bile acids by Clostridia and enterococci; bile acids and steroids 25. , 2009, Acta pathologica et microbiologica Scandinavica.

[142]  A. Norman Influence of chemotherapeutics on the metabolism of bile acids in the intestine of rats; steroids and bile acids 17. , 1955, Acta physiologica Scandinavica.

[143]  S. Lindstedt,et al.  On the excretion of bile acid derivatives in feces of rats fed cholic acid-2414C and chenodesoxycholic acid-2414C; bile acids and steroids 19. , 1955, Acta physiologica Scandinavica.

[144]  A. Norman,et al.  Metabolic Products of Cholesterol in Bile and Feces of Rat.∗ Steroids and Bile Acids , 1953, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[145]  J. Voltz,et al.  The Preparation of Some Carboxylabelled Bile Acids. Bile Acids and Steroids 2. , 1953 .

[146]  J. Reyniers,et al.  Rearing germ-free albino rats. , 1946, Lobund reports.

[147]  B. Gustafsson Germ-free rearing of rats. , 1946, Acta anatomica.

[148]  K. Bloch,et al.  THE BIOLOGICAL CONVERSION OF CHOLESTEROL TO CHOLIC ACID , 1943 .

[149]  M. Frankel The biological splitting of conjugated bile acids. , 1936, Biochemical Journal.

[150]  J. D. Bernal Crystal Structures of Vitamin D and Related Compounds , 1932, Nature.

[151]  H. Wieland,et al.  Untersuchungen über die Gallensäuren. XXI. Mitteilung. Zur Kenntnis der menschlichen Galle. 1. , 1924 .

[152]  H. Fischer,et al.  Zur Kenntnis der Gallenfarbstoffe. I. Mitteilung. , 1911 .

[153]  H. Thierfelder,et al.  Thierisches Leben ohne Bakterien im Verdauungskanal. (II. Mittheilung). , 1897 .

[154]  H. Thierfelder,et al.  Thierisches Leben ohne Bakterien im Verdauungskanal. , 1896 .

[155]  F. Mylius Ueber die Cholsäure , 1886 .

[156]  A. Strecker Untersuchung der Ochsengalle , 1848 .