Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution

Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution are reported. Simple analytical expressions have been used for the interatomic interactions, including a Lennard‐Jones term and a Coulombic interaction betwen partial charges on each site. Two different interaction potentials have been investigated, and amphiphilic aggregation is shown to depend strongly on the electrostatic properties of the water model. For both potentials the micelle shows a broad transition region between the aqueous and hydrocarbon regions. The hydration of different carbon atoms in the chain is largest for the carboxylic atom, then decreases along the chain, reaching a minimum and then increases again at the end of the chain. The micellar translational and rotational diffusion are too fast, probably due to deficiencies in the water model. The rotational diffusion of the entire micelle is found to be an order of magnitude slower than that of the monomers. Reorientational time correlation functions and or...

[1]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[2]  P. Stilbs,et al.  Micellar dynamics and organization. A multifield 13C NMR spin-lattice relaxation and {1H}13C nuclear overhauser effect study , 1984 .

[3]  K. Dill Configurations of the amphiphilic molecules in micelles , 1982 .

[4]  C. Tanford,et al.  Thermodynamics of micelle formation: prediction of micelle size and size distribution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. M. Haile,et al.  Internal structure of a model micelle via computer simulation. II: Spherically confined aggregates with mobile head groups , 1986 .

[6]  W. Gelbart,et al.  Theory of Chain Packing in Amphiphilic Aggregates , 1985 .

[7]  L. Pratt,et al.  Molecular statistical thermodynamics of model micellar aggregates , 1984 .

[8]  P J Flory,et al.  Molecular organization in micelles and vesicles. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Fromherz Micelle structure: a surfactant-block model , 1981 .

[10]  J. M. Haile,et al.  Internal structure of a model micelle via computer simulation , 1984 .

[11]  B. Cabane,et al.  High resolution neutron scattering on ionic surfactant micelles : sds in water , 1985 .

[12]  F. Menger,et al.  On the structure of micelles , 1979 .

[13]  G. Gunnarsson,et al.  Electrostatic interactions in micellar solutions. A comparison between Monte Carlo simulations and solutions of the Poisson-Boltzmann equation , 1982 .

[14]  D. Lévesque,et al.  Computer simulation and theoretical results for a polar-polarizable fluid , 1985 .

[15]  P. Linse,et al.  A Monte Carlo study of the electrostatic interaction between highly charged aggregates. A test of the cell model applied to micellar systems , 1983 .

[16]  J. Overbeek,et al.  The energetics of highly charged spherical micelles as applied to sodium lauryl sulphate , 1956 .

[17]  B. Jönsson,et al.  Vectorizing a general purpose molecular dynamics simulation program , 1986 .

[18]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS OF A BILAYER-MEMBRANE , 1983 .

[19]  G. Gunnarsson,et al.  Surfactant association into micelles: an electrostatic approach , 1980 .

[20]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[21]  C. Chachaty,et al.  Alkyl chain conformations in a micellar system from the nuclear spin relaxation enhanced by paramagnetic ions , 1982 .

[22]  B. Lindman,et al.  Micelles. Physical chemistry of surfactant association , 1979 .

[23]  Ken A. Dill,et al.  Molecular conformations in surfactant micelles , 1984, Nature.

[24]  U. Henriksson,et al.  NMR relaxation in isotropic surfactant systems. A deuterium, carbon-13, and nitrogen-14 NMR study of the micellar (L1) and cubic (I1) phases in the dodecyltrimethylammonium chloride water system , 1985 .

[25]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[26]  W. Gelbart,et al.  Chain organization and thermodynamics in micelles and bilayers. I. Theory , 1985 .

[27]  B. Cabane Structure of the water/surfactant interface in micelles : an NMR study of SDS micelles labelled with paramagnetic ions , 1981 .

[28]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[29]  F. Menger,et al.  On the structure of micelles , 1984 .

[30]  D. Gruen A model for the chains in amphiphilic aggregates. 2. Thermodynamic and experimental comparisons for aggregates of different shape and size , 1985 .

[31]  R. Zwanzig,et al.  Rotational friction coefficients for spheroids with the slipping boundary condition , 1974 .

[32]  Statistical thermodynamics of amphiphile chains in micelles. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[34]  K. L. Mittal,et al.  Solution Behavior of Surfactants , 1982 .

[35]  M. Neumann The dielectric constant of water. Computer simulations with the MCY potential , 1985 .

[36]  R. C. Weast Handbook of chemistry and physics , 1973 .

[37]  The relationship between domes and foams: application of geodesic mathematics to micelles , 1984 .

[38]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[39]  Sow-Hsin Chen,et al.  Determination of interparticle structure factors in ionic micellar solutions by small angle neutron scattering , 1983 .

[40]  D. Gruen A model for the chains in amphiphilic aggregates. 1. Comparison with a molecular dynamics simulation of a bilayer , 1985 .

[41]  D. F. Evans,et al.  Ion binding and dressed micelles , 1984 .

[42]  B. Jönsson,et al.  A molecular approach to quadrupole relaxation. Monte Carlo simulations of dilute Li+, Na+, and Cl− aqueous solutions , 1982 .