Optimized base editors enable efficient editing in cells, organoids and mice

[1]  David R. Liu,et al.  Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction , 2018, Nature Biotechnology.

[2]  Eugene Chung,et al.  Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy , 2018, Nature Biotechnology.

[3]  David R. Liu,et al.  Evolved Cas9 variants with broad PAM compatibility and high DNA specificity , 2018, Nature.

[4]  Max J. Kellner,et al.  RNA editing with CRISPR-Cas13 , 2017, Science.

[5]  Jaewoong Hwang,et al.  Rescue of high-specificity Cas9 variants using sgRNAs with matched 5’ nucleotides , 2017, Genome Biology.

[6]  Daniel G. Anderson,et al.  Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing , 2017, Nature Biotechnology.

[7]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[8]  Kevin T. Zhao,et al.  Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity , 2017, Science Advances.

[9]  Teng Han,et al.  R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine , 2017, Nature Communications.

[10]  David R. Liu,et al.  Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery , 2017, Nature Communications.

[11]  Yukiko Muramatsu,et al.  mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer , 2017, Oncotarget.

[12]  Teng Han,et al.  Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer , 2017, Nature Biotechnology.

[13]  Daesik Kim,et al.  Highly efficient RNA-guided base editing in mouse embryos , 2017, Nature Biotechnology.

[14]  Anirvan Ghosh,et al.  Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes , 2017, Nature Biotechnology.

[15]  Kevin T. Zhao,et al.  Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions , 2017, Nature Biotechnology.

[16]  Gaelen T. Hess,et al.  Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells , 2016, Nature Methods.

[17]  Yan Song,et al.  Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells , 2016, Nature Methods.

[18]  A. Kondo,et al.  Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems , 2016, Science.

[19]  Jos Jonkers,et al.  Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland , 2016, Genes & development.

[20]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[21]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[22]  Martin J. Aryee,et al.  Engineered CRISPR-Cas9 nucleases with altered PAM specificities , 2015, Nature.

[23]  Daniel G. Anderson,et al.  Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. , 2015, Human Gene Therapy.

[24]  Toshiro Sato,et al.  Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids , 2015, Nature Medicine.

[25]  Lukas E Dow,et al.  Inducible in vivo genome editing with CRISPR/Cas9 , 2015, Nature Biotechnology.

[26]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[27]  Dmitriy Sonkin,et al.  Inhibiting Tankyrases sensitizes KRAS-mutant cancer cells to MEK inhibitors via FGFR2 feedback signaling. , 2014, Cancer research.

[28]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[29]  Jeffrey J Meyer,et al.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5) , 2013 .

[30]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[31]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[32]  Christof Fellmann,et al.  A pipeline for the generation of shRNA transgenic mice , 2012, Nature Protocols.

[33]  Marc W. Kirschner,et al.  Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling , 2009, Nature.

[34]  Jan Kitajewski,et al.  New targets of β-catenin signaling in the liver are involved in the glutamine metabolism , 2002, Oncogene.