Exact and approximative algorithms for coloring G(n,p)

We investigate the problem of coloring random graphs G(n, p) in polynomial expected time. For the case p ≤ 1.01/n, we present an algorithm that finds an optimal coloring in linear expected time. For p ≫ ln6(n)/n, we give algorithms which approximate the chromatic number within a factor of O( ). We also obtain an O(/ln(np))‐approximation algorithm for the independence number. As an application, we propose an algorithm for deciding satisfiability of random 2k‐SAT formulas over n propositional variables with ≥ ln7(n)nk clauses in polynomial expected time. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2004

[1]  Andrzej Rucinski,et al.  Random graphs , 2006, SODA.

[2]  C. Moore,et al.  MAX k-CUT and approximating the chromatic number of random graphs , 2006 .

[3]  Uriel Feige,et al.  Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.

[4]  Andreas Goerdt,et al.  Recognizing more random unsatisfiable 3-SAT instances efficiently , 2003, Electron. Notes Discret. Math..

[5]  Amin Coja-Oghlan,et al.  Certifying Unsatisfiability of Random 2k-SAT Formulas Using Approximation Techniques , 2003, FCT.

[6]  Cristopher Moore,et al.  MAX k‐CUT and approximating the chromatic number of random graphs , 2003, Random Struct. Algorithms.

[7]  A. Coja-Oghlan The Lovász Number of Random Graphs , 2003, Combinatorics, Probability and Computing.

[8]  Amin Coja-Oghlan,et al.  Finding Large Independent Sets in Polynomial Expected Time , 2003, Combinatorics, Probability and Computing.

[9]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[10]  V. Vu,et al.  Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time , 2000, J. Comb. Optim..

[11]  Michael Krivelevich,et al.  Deciding k-colorability in expected polynomial time , 2002, Inf. Process. Lett..

[12]  Uriel Feige,et al.  Heuristics for Semirandom Graph Problems , 2001, J. Comput. Syst. Sci..

[13]  C. Moore,et al.  Almost All Graphs of Degree 4 are 3-colorable , 2001 .

[14]  Joel Friedman,et al.  Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently , 2001, ICALP.

[15]  Michael Krivelevich,et al.  Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods , 2001, STACS.

[16]  Uriel Feige,et al.  Zero knowledge and the chromatic number , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[17]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[18]  D. Knuth The Sandwich Theorem , 1993, Electron. J. Comb..

[19]  Ludek Kucera,et al.  The Greedy Coloring Is a Bad Probabilistic Algorithm , 1991, J. Algorithms.

[20]  Ferenc Juhász,et al.  The asymptotic behaviour of lovász’ ϑ function for random graphs , 1982, Comb..

[21]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[22]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[23]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[24]  Michael Krivelevich,et al.  Coloring Random Graphs — an Algorithmic Perspective , 2002 .

[25]  Electronic Colloquium on Computational Complexity, 2006. 51 Ehud Friedgut. Necessary and sufficient conditions for sharp thresholds of graph properties and the k-SAT problem , 1999 .

[26]  David Eppstein,et al.  3-Coloring in time O(1.3446n): A no-MIS Algorithm , 1995, Electron. Colloquium Comput. Complex..

[27]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .