Finding Branch-Decompositions and Rank-Decompositions

We present a new algorithm that can output the rank-decomposition of width at most k of a graph if such exists. For that we use an algorithm that, for an input matroid represented over a fixed finite field, outputs its branch-decomposition of width at most k if such exists. This algorithm works also for partitioned matroids. Both these algorithms are fixed-parameter tractable, that is, they run in time O(n3) for each fixed value of k where n is the number of vertices / elements of the input. (The previous best algorithm for construction of a branch-decomposition or a rank-decomposition of optimal width due to Oum and Seymour [Testing branch-width. J. Combin. Theory Ser. B, 97(3) (2007) 385-393] is not fixed-parameter tractable).

[1]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[2]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces : update 2001 , 2001 .

[3]  Petr Hlinený,et al.  A Parametrized Algorithm for Matroid Branch-Width , 2005, SIAM J. Comput..

[4]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2005, TALG.

[5]  B. Reed,et al.  Polynomial Time Recognition of Clique-Width ≤ 3 Graphs , 2000 .

[6]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[7]  Michael U. Gerber,et al.  Algorithms for vertex-partitioning problems on graphs with fixed clique-width , 2003, Theor. Comput. Sci..

[8]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[9]  Bert Gerards,et al.  Tangles, tree-decompositions and grids in matroids , 2009, J. Comb. Theory, Ser. B.

[10]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[11]  Bruno Courcelle,et al.  Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.

[12]  Stéphan Thomassé,et al.  Branchwidth of graphic matroids , 2007 .

[13]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[14]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[15]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[16]  Bert Gerards,et al.  On the excluded minors for the matroids of branch-width k , 2003, J. Comb. Theory, Ser. B.

[17]  Illya V. Hicks,et al.  The branchwidth of graphs and their cycle matroids , 2007, J. Comb. Theory, Ser. B.

[18]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[19]  Udi Rotics,et al.  Clique-width minimization is NP-hard , 2006, STOC '06.

[20]  Petr Hlinený Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.

[21]  Udi Rotics,et al.  Polynomial Time Recognition of Clique-Width \le \leq 3 Graphs (Extended Abstract) , 2000, Latin American Symposium on Theoretical Informatics.

[22]  Paul D. Seymour,et al.  Testing branch-width , 2007, J. Comb. Theory, Ser. B.

[23]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[24]  Pierre Fraigniaud,et al.  The price of connectedness in expansions , 2004 .

[25]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[26]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.