Optical technologies for space division multiplexing

Many technological challenges have to be overcome before a cost and energy efficient fiber communication system based on space division multiplexing (SDM) can be realized. In this paper we review recent R&D efforts in developing optical components for SDM networks.

[1]  Toshio Morioka,et al.  12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization , 2014, OFC 2014.

[2]  René-Jean Essiambre,et al.  Capacity Trends and Limits of Optical Communication Networks , 2012, Proceedings of the IEEE.

[3]  A. Kar,et al.  57 channel (19×3) spatial multiplexer fabricated using direct laser inscription , 2014, OFC 2014.

[4]  David J. Richardson,et al.  First demonstration of cladding pumped few-moded EDFA for mode division multiplexed transmission , 2014, OFC 2014.

[5]  Pierre Kern,et al.  Molding the flow of light: Photonics in astronomy , 2012 .

[6]  E. Ip,et al.  105Pb/s Transmission with 109b/s/Hz Spectral Efficiency using Hybrid Single- and Few-Mode Cores , 2012 .

[7]  Kunimasa Saitoh,et al.  Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers , 2012, IEEE Photonics Journal.

[8]  M. Koshiba,et al.  Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend. , 2013, Optics express.

[9]  B. Puttnam,et al.  305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber , 2013, Journal of Lightwave Technology.

[10]  Roland Ryf,et al.  LCoS-based mode shaper for few-mode fiber. , 2013, Optics express.

[11]  Osamu Shimakawa,et al.  Compact multi-core fiber fan-out with GRIN-lens and micro-lens array , 2014, OFC 2014.

[12]  B Zhu,et al.  Cladding-pumped erbium-doped multicore fiber amplifier. , 2012, Optics express.

[13]  Roland Ryf,et al.  Geometric requirements for photonic lanterns in space division multiplexing. , 2012, Optics express.

[14]  B Zhu,et al.  Amplification and noise properties of an erbium-doped multicore fiber amplifier. , 2011, Optics express.

[15]  L. Gruner-Nielsen,et al.  Few mode transmission fiber with low DGD, low mode coupling and low loss , 2012, OFC/NFOEC.

[16]  Naoya Wada,et al.  19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics. , 2014, Optics express.

[17]  J. R. Salazar-Gil,et al.  Mode-selective photonic lanterns for space-division multiplexing. , 2014, Optics express.

[18]  M. Shiino,et al.  Development of fiber bundle type fan-out for multicore fiber , 2012, 2012 17th Opto-Electronics and Communications Conference.

[19]  Yusaku Tottori,et al.  Integrated optical connection module for 7-core multi-core fiber and 7 single mode fibers , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[20]  T. Hayashi,et al.  Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. , 2011, Optics express.

[21]  Peter J. Winzer,et al.  MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. , 2011, Optics express.

[22]  Tomoki Sano,et al.  Pluggable fan-out realizing physical-contact and low coupling loss for multi-core fiber , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[23]  Toshio Morioka,et al.  1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency , 2012 .

[24]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[25]  Ryuichi Sugizaki,et al.  Multicore EDFA for space division multiplexing by utilizing cladding-pumped technology , 2014, OFC 2014.