Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics

[1]  H. Khanbareh Expanding the functionality of piezo-particulate composites , 2016 .

[2]  P. Bisegna,et al.  New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications , 2015 .

[3]  S. Zwaag,et al.  Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites , 2014 .

[4]  P. Bisegna,et al.  Piezo-Active Composites: Orientation Effects and Anisotropy Factors , 2013 .

[5]  P. Bisegna,et al.  Anisotropic piezoelectric properties of 1–3 ceramic / polymer composites comprising rods with elliptic cross section , 2010 .

[6]  A. V. Krivoruchko,et al.  Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics , 2008 .

[7]  Chongjun He,et al.  Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique , 2007 .

[8]  R. Kar-Gupta,et al.  Electromechanical response of 1–3 piezoelectric composites: An analytical model , 2007 .

[9]  A. V. Krivoruchko,et al.  Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites , 2006 .

[10]  Ahmad Safari,et al.  Rapid Prototyping of Novel Piezoelectric Composites , 2006 .

[11]  R. Kar-Gupta,et al.  Electromechanical response of 1-3 piezoelectric composites: Effect of poling characteristics , 2005 .

[12]  A. Safari,et al.  Piezoelectric composites for sensor and actuator applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  R. Whatmore,et al.  Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis , 2005 .

[14]  V. Topolov,et al.  Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites , 2002 .

[15]  C. Poizat,et al.  Homogénéisation périodique de piézocomposites 03 : influence de la distribution , 2001 .

[16]  M. Lethiecq,et al.  A comparative study of different methods of evaluating effective electromechanical properties of 0-3 and 1-3 ceramic/polymer composites , 2000 .

[17]  D. Das-gupta,et al.  Mixed connectivity composite material characterization for electroactive sensors , 1999 .

[18]  W. Kreher,et al.  The effective thermoelectroelastic properties of microinhomogeneous materials , 1999 .

[19]  C. Choy,et al.  Study on BaTiO3/P(VDF-TrFE) 0–3 composites , 1999 .

[20]  Y. Hirata,et al.  Effects of Aspect Ratio of Lead Zirconate Titanate on 1-3 Piezoelectric Composite Properties , 1997 .

[21]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[22]  C. Choy,et al.  Thermal hysteresis in the permittivity and polarization of lead zirconate titanate/vinylidenefluoride-trifluoroethylene 0-3 composites , 1996 .

[23]  Jin H. Huang,et al.  Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers , 1996 .

[24]  D. K. Das-Gupta,et al.  Inorganic ceramic/polymer ferroelectric composite electrets , 1996 .

[25]  A. I. Chernobabov,et al.  On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics , 1994 .

[26]  D. Das-gupta,et al.  Electroactive polymer-ceramic composites , 1994, Proceedings of 1994 4th International Conference on Properties and Applications of Dielectric Materials (ICPADM).

[27]  A. I. Chernobabov,et al.  On the piezoelectric anisotropy in modified PbTiO3 ceramics , 1994 .

[28]  M. Taya,et al.  An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  C. Randall,et al.  Processing of electroceramic-polymer composites using the electrorheological effect , 1993 .

[30]  A. V. Turik,et al.  The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics , 1991 .

[31]  J. Cavaillé,et al.  Dielectric and piezoelectric properties of copolymer-ferroelectric composite , 1990 .

[32]  N. M. Shorrocks,et al.  0–3 piezoelectric composites for large area hydrophones , 1989 .

[33]  L. Pardo,et al.  Theoretical treatment of ferroelectric composites using Monte Carlo calculations , 1988 .

[34]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[35]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[36]  P. Bisegna,et al.  Piezo-Active Composites: Microgeometry–Sensitivity Relations , 2014 .

[37]  Y. Poon,et al.  Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites based on effective medium theory , 2003 .

[38]  L. Azrar,et al.  Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements , 2003 .

[39]  M. Lethiecq,et al.  Modeling of highly loaded 0-3 piezoelectric composites using a matrix method , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Jin H. Huang,et al.  Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion , 1994 .

[41]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[42]  S. O. Kramarov,et al.  Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions , 1989 .

[43]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  J. V. Biggers,et al.  Composites of PZT and Epoxy for Hydrostatic Transducer Applications , 1981 .

[45]  Don Berlincourt,et al.  3 – Piezoelectric and Piezomagnetic Materials and Their Function in Transducers , 1964 .