A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes

Spatially-coupled low-density parity-check (SC-LDPC) codes are known to have excellent asymptotic properties. Much less is known regarding their finite-length performance. We propose a scaling law to predict the error probability of finite-length spatially coupled code ensembles when transmission takes place over the binary erasure channel. We discuss how the parameters of the scaling law are connected to fundamental quantities appearing in the asymptotic analysis of these ensembles and we verify that the predictions of the scaling law fit well to the data derived from simulations over a wide range of parameters. The ultimate goal of this line of research is to develop analytic tools for the design of SC-LDPC codes under practical constraints.

[1]  Michael Lentmaier,et al.  Exact free distance and trapping set growth rates for LDPC convolutional codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[2]  Andrea Montanari,et al.  Finite-Length Scaling for Iteratively Decoded LDPC Ensembles , 2004, IEEE Transactions on Information Theory.

[3]  Rolf Johannesson,et al.  LDPC convolutional codes versus QC LDPC block codes in communication standard scenarios , 2014, 2014 IEEE International Symposium on Information Theory.

[4]  Nicolas Macris,et al.  Decay of Correlations for Sparse Graph Error Correcting Codes , 2011, SIAM J. Discret. Math..

[5]  Kenta Kasai,et al.  Analytical Solution of Covariance Evolution for Irregular LDPC Codes , 2009, IEEE Transactions on Information Theory.

[6]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[7]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[8]  Gerhard Fettweis,et al.  Comparison of LDPC block and LDPC convolutional codes based on their decoding latency , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[9]  P. Collin‐Dufresne,et al.  Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .

[10]  Peter J. Thomas,et al.  A Lower Bound for the First Passage Time Density of the Suprathreshold Ornstein-Uhlenbeck Process , 2011, Journal of Applied Probability.

[11]  Ömer Önalan The Ornstein–Uhlenbeck Processes Driven by Lévy Process and Application to Finance , 2010 .

[12]  Gerhard Fettweis,et al.  Asymptotically regular LDPC codes with linear distance growth and thresholds close to capacity , 2010, 2010 Information Theory and Applications Workshop (ITA).

[13]  Lara Dolecek,et al.  Spatially coupled sparse codes on graphs: theory and practice , 2013, IEEE Communications Magazine.

[14]  B. O’Meara,et al.  MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN–UHLENBECK MODEL OF ADAPTIVE EVOLUTION , 2012, Evolution; international journal of organic evolution.

[15]  Pablo M. Olmos,et al.  Analyzing finite-length protograph-based spatially coupled LDPC codes , 2014, 2014 IEEE International Symposium on Information Theory.

[16]  A. G. Nobile,et al.  Exponential trends of Ornstein-Uhlenbeck first passage time densities , 1985 .

[17]  J. Doob,et al.  The Brownian Movement and Stochastic Equations , 1942 .

[18]  Gillespie,et al.  Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Daniel J. Costello,et al.  LDPC block and convolutional codes based on circulant matrices , 2004, IEEE Transactions on Information Theory.

[20]  Francesco Caltagirone,et al.  Dynamics and termination cost of spatially coupled mean-field models , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[22]  Satya N Majumdar,et al.  Persistence exponents and the statistics of crossings and occupation times for Gaussian stationary processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Xiao Ma,et al.  Performance comparison of non-binary LDPC block and spatially coupled codes , 2014, 2014 IEEE International Symposium on Information Theory.

[24]  Laurent Schmalen,et al.  On the convergence speed of spatially coupled LDPC ensembles , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[25]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[26]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[27]  J. L. Pedersen,et al.  Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .

[28]  Michael Lentmaier,et al.  On the minimum distance of generalized spatially coupled LDPC codes , 2013, 2013 IEEE International Symposium on Information Theory.

[29]  N. Wormald Differential Equations for Random Processes and Random Graphs , 1995 .

[30]  O. Aalen,et al.  Survival Models Based on the Ornstein-Uhlenbeck Process , 2004, Lifetime data analysis.

[31]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[32]  Shunsuke Sato,et al.  First-passage-time density and moments of the ornstein-uhlenbeck process , 1988, Journal of Applied Probability.

[33]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[34]  Pablo M. Olmos,et al.  Scaling behavior of convolutional LDPC ensembles over the BEC , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[35]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[36]  Andrea Montanari,et al.  Finite-length scaling of irregular LDPC code ensembles , 2005, IEEE Information Theory Workshop, 2005..

[37]  Andrea Montanari,et al.  Further results on finite-length scaling for iteratively decoded LDPC ensembles , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[38]  M. Thomas Some mean first-passage time approximations for the Ornstein-Uhlenbeck process , 1975, Journal of Applied Probability.

[39]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[40]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[41]  Michael Lentmaier,et al.  Implementation aspects of LDPC convolutional codes , 2008, IEEE Transactions on Communications.

[42]  Michael Lentmaier,et al.  Distance Bounds for an Ensemble of LDPC Convolutional Codes , 2007, IEEE Transactions on Information Theory.