Real-time user-guided image colorization with learned deep priors

We propose a deep learning approach for user-guided image colorization. The system directly maps a grayscale image, along with sparse, local user "hints" to an output colorization with a Convolutional Neural Network (CNN). Rather than using hand-defined rules, the network propagates user edits by fusing low-level cues along with high-level semantic information, learned from large-scale data. We train on a million images, with simulated user inputs. To guide the user towards efficient input selection, the system recommends likely colors based on the input image and current user inputs. The colorization is performed in a single feed-forward pass, enabling real-time use. Even with randomly simulated user inputs, we show that the proposed system helps novice users quickly create realistic colorizations, and offers large improvements in colorization quality with just a minute of use. In addition, we demonstrate that the framework can incorporate other user "hints" to the desired colorization, showing an application to color histogram transfer.

[1]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[2]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[3]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[4]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[5]  Erik Reinhard,et al.  Color Transfer between Images , 2001, IEEE Computer Graphics and Applications.

[6]  AshikhminMichael,et al.  Transferring color to greyscale images , 2002 .

[7]  Klaus Mueller,et al.  Transferring color to greyscale images , 2002, ACM Trans. Graph..

[8]  Dani Lischinski,et al.  Colorization using optimization , 2004, SIGGRAPH 2004.

[9]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[10]  Dani Lischinski,et al.  Colorization by example , 2005, EGSR '05.

[11]  Jun-Cheng Chen,et al.  An adaptive edge detection based colorization algorithm and its applications , 2005, ACM Multimedia.

[12]  Tien-Tsin Wong,et al.  Manga colorization , 2006, ACM Trans. Graph..

[13]  Tien-Tsin Wong,et al.  Manga colorization , 2006, SIGGRAPH 2006.

[14]  S. V. N. Vishwanathan,et al.  Learning to compress images and videos , 2007, ICML '07.

[15]  Harry Shum,et al.  Natural Image Colorization , 2007, Rendering Techniques.

[16]  Stephen Lin,et al.  Intrinsic colorization , 2008, ACM Trans. Graph..

[17]  Fabio Pellacini,et al.  AppProp: all-pairs appearance-space edit propagation , 2008, SIGGRAPH 2008.

[18]  Edward H. Adelson,et al.  Eurographics Symposium on Rendering 2008 Scribbleboost: Adding Classification to Edge-aware Interpolation of Local Image and Video Adjustments , 2022 .

[19]  Bernhard Schölkopf,et al.  Automatic Image Colorization Via Multimodal Predictions , 2008, ECCV.

[20]  Fabio Pellacini,et al.  AppProp: all-pairs appearance-space edit propagation , 2008, ACM Trans. Graph..

[21]  Adam Finkelstein,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, SIGGRAPH 2009.

[22]  Xiaofei He,et al.  A unified active and semi-supervised learning framework for image compression , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Shi-Min Hu,et al.  Efficient affinity-based edit propagation using K-D tree , 2009, SIGGRAPH 2009.

[24]  Takeshi Naemura,et al.  Automatic colorization of grayscale images using multiple images on the web , 2009, SIGGRAPH '09.

[25]  Chun Chen,et al.  Data-driven image color theme enhancement , 2010, SIGGRAPH 2010.

[26]  Stephen Lin,et al.  Semantic colorization with internet images , 2011, ACM Trans. Graph..

[27]  Xiaowu Chen,et al.  Manifold preserving edit propagation , 2012, ACM Trans. Graph..

[28]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[29]  Deepu Rajan,et al.  Image colorization using similar images , 2012, ACM Multimedia.

[30]  Li Xu,et al.  A sparse control model for image and video editing , 2013, ACM Trans. Graph..

[31]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[33]  Szymon Rusinkiewicz,et al.  AutoStyle: Automatic Style Transfer from Image Collections to Users' Images , 2014, Comput. Graph. Forum.

[34]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[35]  Hui Huang,et al.  Image recoloring using geodesic distance based color harmonization , 2015, Computational Visual Media.

[36]  Noah Snavely,et al.  Material recognition in the wild with the Materials in Context Database , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Stephen DiVerdi,et al.  Palette-based photo recoloring , 2015, ACM Trans. Graph..

[38]  Saining Xie,et al.  Holistically-Nested Edge Detection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[39]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[41]  Bin Sheng,et al.  Deep Colorization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[42]  Alexei A. Efros,et al.  Learning a Discriminative Model for the Perception of Realism in Composite Images , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[43]  David A. Forsyth,et al.  Learning Large-Scale Automatic Image Colorization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[44]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[45]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[46]  Yizhou Yu,et al.  Automatic Photo Adjustment Using Deep Neural Networks , 2014, ACM Trans. Graph..

[47]  Jonathan T. Barron,et al.  The Fast Bilateral Solver , 2015, ECCV.

[48]  Linda Doyle,et al.  Painting style transfer for head portraits using convolutional neural networks , 2016, ACM Trans. Graph..

[49]  Edgar Simo-Serra,et al.  Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification , 2016 .

[50]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[53]  Alexei A. Efros,et al.  Colorful Image Colorization , 2016, ECCV.

[54]  Gregory Shakhnarovich,et al.  Learning Representations for Automatic Colorization , 2016, ECCV.

[55]  Frédo Durand,et al.  Deep joint demosaicking and denoising , 2016, ACM Trans. Graph..

[56]  Yoshihiro Kanamori,et al.  DeepProp: Extracting Deep Features from a Single Image for Edit Propagation , 2016, Comput. Graph. Forum.

[57]  Alexei A. Efros,et al.  A 4D Light-Field Dataset and CNN Architectures for Material Recognition , 2016, ECCV.

[58]  Hiroshi Ishikawa,et al.  Let there be color! , 2016, ACM Trans. Graph..

[59]  Ning Xu,et al.  Deep Interactive Object Selection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Alexei A. Efros,et al.  Generative Visual Manipulation on the Natural Image Manifold , 2016, ECCV.

[61]  Fisher Yu,et al.  Scribbler: Controlling Deep Image Synthesis with Sketch and Color , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Kevin Frans,et al.  Outline Colorization through Tandem Adversarial Networks , 2017, ArXiv.