Fourier Phase Retrieval with a Single Mask by Douglas-Rachford Algorithm

The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.

[1]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.

[2]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[3]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[4]  J. Rodenburg,et al.  Soft X-ray spectromicroscopy using ptychography with randomly phased illumination , 2013, Nature Communications.

[5]  L. Demanet,et al.  Stable Optimizationless Recovery from Phaseless Linear Measurements , 2012, Journal of Fourier Analysis and Applications.

[6]  A. Fannjiang,et al.  Phase retrieval with random phase illumination. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Albert Fannjiang,et al.  Absolute uniqueness of phase retrieval with random illumination , 2011, ArXiv.

[8]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[9]  Yang Wang,et al.  Invertibility and Robustness of Phaseless Reconstruction , 2013, Applied and Computational Harmonic Analysis.

[10]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[11]  Heinz H. Bauschke,et al.  The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle , 2013, J. Approx. Theory.

[12]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[13]  Dustin G. Mixon,et al.  Phase retrieval from power spectra of masked signals , 2013, ArXiv.

[14]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[15]  Wenjing Liao,et al.  Fourier phasing with phase-uncertain mask , 2012, 1212.3858.

[16]  Radu Balan,et al.  Stability of phase retrievable frames , 2013, Optics & Photonics - Optical Engineering + Applications.

[17]  Henry N. Chapman,et al.  Femtosecond X-ray protein nanocrystallography , 2010 .

[18]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[19]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[20]  Kazuto Yamauchi,et al.  A Bragg beam splitter for hard x-ray free-electron lasers. , 2013, Optics express.

[21]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[22]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[23]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[24]  C. Falldorf,et al.  Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system. , 2010, Applied optics.

[25]  Babak Hassibi,et al.  On robust phase retrieval for sparse signals , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[26]  Felix Krahmer,et al.  A Partial Derandomization of PhaseLift Using Spherical Designs , 2013, Journal of Fourier Analysis and Applications.

[27]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[28]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[29]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[30]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[31]  G. Papanicolaou,et al.  Array imaging using intensity-only measurements , 2010 .

[32]  Carl Caleman,et al.  Diffraction before destruction , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[34]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[35]  Percival F Almoro,et al.  Random phase plate for wavefront sensing via phase retrieval and a volume speckle field. , 2008, Applied optics.

[36]  R. Millane,et al.  Aspects of direct phasing in femtosecond nanocrystallography , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[38]  G. Arce,et al.  Spread spectrum phase modulation for coherent X-ray diffraction imaging. , 2015, Optics express.

[39]  F Wyrowski,et al.  Digital diffusers for optical holography. , 1991, Optics letters.

[40]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[41]  Jaakko Astola,et al.  Wave field reconstruction from multiple plane intensity-only data: augmented lagrangian algorithm. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[43]  Chao Yang,et al.  Alternating direction methods for classical and ptychographic phase retrieval , 2012 .

[44]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[45]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[46]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[47]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[48]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[49]  James R Fienup,et al.  Phase retrieval algorithms: a personal tour [Invited]. , 2013, Applied optics.

[50]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.

[52]  J. Miao,et al.  The oversampling phasing method. , 2000, Acta crystallographica. Section D, Biological crystallography.

[53]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[54]  J. Xin,et al.  PhaseLiftOff: an Accurate and Stable Phase Retrieval Method Based on Difference of Trace and Frobenius Norms , 2014, 1406.6761.

[55]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[56]  A. Fannjiang,et al.  Phase Retrieval with One or Two Diffraction Patterns by Alternating Projections with the Null Initialization , 2015, 1510.07379.

[57]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[58]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[59]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[60]  P. Casazza,et al.  Phase Retrieval By Projections , 2013, 1305.6226.

[61]  Herbert A. Hauptman,et al.  The phase problem of x-ray crystallography , 1983, Proceedings / Indian Academy of Sciences.