Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis.

[1]  Zachary A. King,et al.  Escher-Trace: a web application for pathway-based visualization of stable isotope tracing data , 2020, BMC Bioinformatics.

[2]  S. Pedersen,et al.  Pyrazine ring-based Na+/H+ exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1 , 2020, Scientific Reports.

[3]  D. Bar-Sagi,et al.  Plasma membrane v-ATPase controls oncogenic Ras-induced macropinocytosis , 2019, Nature.

[4]  A. Thorburn,et al.  Cancer Cells Upregulate NRF2 Signaling to Adapt to Autophagy Inhibition. , 2019, Developmental cell.

[5]  J. Debnath,et al.  Targeting Autophagy in Cancer: Recent Advances and Future Directions. , 2019, Cancer discovery.

[6]  D. V. Von Hoff,et al.  Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. , 2019, JAMA oncology.

[7]  C. Der,et al.  Blocking autophagy to starve pancreatic cancer , 2019, Nature Reviews Molecular Cell Biology.

[8]  S. Knapp,et al.  Conservation of structure, function and inhibitor binding in UNC-51-like kinase 1 and 2 (ULK1/2). , 2019, The Biochemical journal.

[9]  E. Petricoin,et al.  Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer , 2019, Nature Medicine.

[10]  B. Weissman,et al.  NRF2 Activation in Cancer: From DNA to Protein. , 2019, Cancer research.

[11]  S. Hanash,et al.  Syndecan1 is a critical mediator of macropinocytosis in pancreatic cancer , 2019, Nature.

[12]  J. Yap,et al.  Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers , 2019, Nature Medicine.

[13]  A. Jauch,et al.  Autophagic cell death restricts chromosomal instability during replicative crisis , 2019, Nature.

[14]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[15]  C. Commisso,et al.  Detection and Quantification of Macropinosomes in Pancreatic Tumors. , 2018, Methods in molecular biology.

[16]  Christian M. Metallo,et al.  Quantifying Intermediary Metabolism and Lipogenesis in Cultured Mammalian Cells Using Stable Isotope Tracing and Mass Spectrometry. , 2019, Methods in molecular biology.

[17]  Wilhelm Palm Metabolic functions of macropinocytosis , 2018, Philosophical Transactions of the Royal Society B.

[18]  R. Kay,et al.  The origins and evolution of macropinocytosis , 2018, Philosophical Transactions of the Royal Society B.

[19]  M. Overholtzer,et al.  Macropinocytosis and autophagy crosstalk in nutrient scavenging , 2018, Philosophical Transactions of the Royal Society B.

[20]  Jeffrey P. MacKeigan,et al.  A Potent and Selective ULK1 Inhibitor Suppresses Autophagy and Sensitizes Cancer Cells to Nutrient Stress , 2018, iScience.

[21]  M. Komatsu,et al.  Activation of p62/SQSTM1–Keap1–Nuclear Factor Erythroid 2-Related Factor 2 Pathway in Cancer , 2018, Front. Oncol..

[22]  K. Lidke,et al.  Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins , 2018, The Journal of cell biology.

[23]  M. Karin,et al.  Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. , 2017, Cancer cell.

[24]  J. Harper,et al.  Systematic Analysis of Ribophagy in Human Cells Reveals By-stander Flux During Selective Autophagy , 2017, Nature Cell Biology.

[25]  M. V. Recouvreux,et al.  Macropinocytosis: A Metabolic Adaptation to Nutrient Stress in Cancer , 2017, Front. Endocrinol..

[26]  Tianhua Zhou,et al.  VPS34 Acetylation Controls Its Lipid Kinase Activity and the Initiation of Canonical and Non-canonical Autophagy. , 2017, Molecular cell.

[27]  J. Bonifacino,et al.  BORC coordinates encounter and fusion of lysosomes with autophagosomes , 2017, Autophagy.

[28]  M. V. Vander Heiden,et al.  Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions , 2017, Nature Communications.

[29]  K. Guan,et al.  eIF5A-PEAK1 Signaling Regulates YAP1/TAZ Protein Expression and Pancreatic Cancer Cell Growth. , 2017, Cancer research.

[30]  L. Eichinger,et al.  Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model , 2017, Autophagy.

[31]  M. Karin,et al.  p62 in Cancer: Signaling Adaptor Beyond Autophagy , 2016, Cell.

[32]  E. Spiliotis,et al.  Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion , 2016, The Journal of cell biology.

[33]  R. Kay,et al.  Uses and abuses of macropinocytosis , 2016, Journal of Cell Science.

[34]  S. Subramaniam,et al.  p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. , 2016, Cancer cell.

[35]  M. Nakamura,et al.  Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death , 2016, Oncogenesis.

[36]  Shichen Shen,et al.  Global Analysis of Cellular Protein Flux Quantifies the Selectivity of Basal Autophagy , 2016, Cell reports.

[37]  Prasenjit Dey,et al.  Genetics and biology of pancreatic ductal adenocarcinoma , 2006, Genes & development.

[38]  John M Asara,et al.  Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. , 2015, Molecular cell.

[39]  K. Ross,et al.  Transcriptional control of the autophagy-lysosome system in pancreatic cancer , 2015, Nature.

[40]  T. Lamark,et al.  p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB* , 2015, The Journal of Biological Chemistry.

[41]  Gerald C. Chu,et al.  Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. , 2014, Cancer discovery.

[42]  D. Browning Pharmacology of Chloroquine and Hydroxychloroquine , 2014, Hydroxychloroquine and Chloroquine Retinopathy.

[43]  D. Green,et al.  To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate , 2014, Cell.

[44]  D. Bar-Sagi,et al.  Determining the macropinocytic index of cells through a quantitative image-based assay , 2014, Nature Protocols.

[45]  T. Deerinck,et al.  Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. , 2013, The Journal of clinical investigation.

[46]  Christian M. Metallo,et al.  Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells , 2013, Nature.

[47]  Travis J Cohoon,et al.  The pivotal role of IKKα in the development of spontaneous lung squamous cell carcinomas. , 2013, Cancer cell.

[48]  V. Lupashin,et al.  COG6 Interacts with a Subset of the Golgi SNAREs and Is Important for the Golgi Complex Integrity , 2013, Traffic.

[49]  A. Walch,et al.  p62 links β-adrenergic input to mitochondrial function and thermogenesis. , 2013, The Journal of clinical investigation.

[50]  N. Mizushima,et al.  The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes , 2012, Cell.

[51]  P. Gleeson,et al.  Macropinocytosis: an endocytic pathway for internalising large gulps , 2011, Immunology and cell biology.

[52]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[53]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[54]  G. Souza,et al.  KeaA, a Dictyostelium kelch-domain protein that regulates the response to stress and development , 2010, BMC Developmental Biology.

[55]  Lilia Alberghina,et al.  Glutamine Deprivation Induces Abortive S-Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fibroblasts , 2009, PloS one.

[56]  S. Fischer,et al.  IKKalpha is required to maintain skin homeostasis and prevent skin cancer. , 2008, Cancer cell.

[57]  A. Ivanov,et al.  Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? , 2008, Methods in molecular biology.

[58]  B. Levine,et al.  Cell biology: Autophagy and cancer , 2007, Nature.

[59]  Jun Onodera,et al.  Autophagy Is Required for Maintenance of Amino Acid Levels and Protein Synthesis under Nitrogen Starvation* , 2005, Journal of Biological Chemistry.

[60]  A. Kimchi,et al.  Autophagy as a cell death and tumor suppressor mechanism , 2004, Oncogene.

[61]  Y. Kan,et al.  NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Moore,et al.  Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma , 1980, International journal of cancer.