Multiple Hypothesis Testing in Microarray Experiments

. DNA microarrays are part of a new and promising class of biotechnologies that allow the monitoring of expression levels in cells for thousands of genes simultaneously. An important and common question in DNA microarray experiments is the identification of differentially expressed genes, that is, genes whose expression levels are associated with a response or covariate of interest. The biological question of differential expression can be restated as a problem in multiple hypothesis testing: the simultaneous test for each gene of the null hypothesis of no association between the expression levels and the responses or covariates. As a typical microarray experiment measures expression levels for thousands of genes simultaneously, large multiplicity problems are generated. This article discusses different approaches to multiple hypothesis testing in the context of DNA microarray experiments and compares the procedures on microarray and simulated data sets.

[1]  H. Keselman,et al.  Multiple Comparison Procedures , 2005 .

[2]  William J. Wilson,et al.  Multivariate Statistical Methods , 2005, Technometrics.

[3]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[4]  S. Dudoit,et al.  Resampling-based multiple testing for microarray data analysis , 2003 .

[5]  M. Schummer,et al.  Selecting Differentially Expressed Genes from Microarray Experiments , 2003, Biometrics.

[6]  Mark J. van der Laan,et al.  Resampling-based multiple testing with asymptotic strong control of type I error , 2003 .

[7]  Yongchao Ge Resampling-based Multiple Testing for Microarray Data Analysis , 2003 .

[8]  J. Shaffer Multiplicity, directional (type III) errors, and the null hypothesis. , 2002, Psychological methods.

[9]  John D. Storey A direct approach to false discovery rates , 2002 .

[10]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[11]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[12]  Ash A. Alizadeh,et al.  Stereotyped and specific gene expression programs in human innate immune responses to bacteria , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Robert Tibshirani,et al.  SAM “Significance Analysis of Microarrays” Users guide and technical document , 2002 .

[14]  S. Dudoit,et al.  STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS , 2002 .

[15]  Dmitri V Zaykin,et al.  Multiple tests for genetic effects in association studies. , 2002, Methods in molecular biology.

[16]  Robert Tibshirani,et al.  EXPLORATORY SCREENING OF GENES AND CLUSTERS FROM MICROARRAY EXPERIMENTS , 2002 .

[17]  M J van der Laan,et al.  Gene expression analysis with the parametric bootstrap. , 2001, Biostatistics.

[18]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[19]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[20]  Terence P. Speed,et al.  Normalization for cDNA microarry data , 2001, SPIE BiOS.

[21]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Bradley Efron,et al.  Microarrays empirical Bayes methods, and false discovery rates , 2001 .

[23]  John W. V. Storey The False Discovery Rate: A Bayesian Interpre-tation and the q-value , 2001 .

[24]  Christopher R. Genovese,et al.  Operating Characteristics and Extensions of the FDR Procedure , 2001 .

[25]  Ingrid Lönnstedt Replicated microarray data , 2001 .

[26]  Christina Kendziorski,et al.  On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data , 2001, J. Comput. Biol..

[27]  S. Dudoit,et al.  Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. , 2000, Genome research.

[28]  Gregory R. Grant,et al.  Generation of patterns from gene expression data by assigning confidence to differentially expressed genes , 2000, Bioinform..

[29]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[30]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[31]  Robert Tibshirani,et al.  Microarrays and Their Use in a Comparative Experiment , 2000 .

[32]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[33]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[34]  G. Hommel,et al.  Bonferroni procedures for logically related hypotheses , 1999 .

[35]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[36]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[37]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Finner,et al.  Stepwise multiple test procedures and control of directional errors , 1999 .

[40]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[41]  D. Botstein,et al.  Exploring the new world of the genome with DNA microarrays , 1999, Nature Genetics.

[42]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[43]  J F Troendle,et al.  A permutational step-up method of testing multiple outcomes. , 1996, Biometrics.

[44]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[45]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[46]  Michael R. Green,et al.  Gene Expression , 1993, Progress in Gene Expression.

[47]  S. P. Wright,et al.  Adjusted P-values for simultaneous inference , 1992 .

[48]  D. Rom A sequentially rejective test procedure based on a modified Bonferroni inequality , 1990 .

[49]  B. Sorić Statistical “Discoveries” and Effect-Size Estimation , 1989 .

[50]  A. Tamhane,et al.  Multiple Comparison Procedures. , 1989 .

[51]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[52]  Rudolf Beran,et al.  Balanced Simultaneous Confidence Sets , 1988 .

[53]  G. Hommel A stagewise rejective multiple test procedure based on a modified Bonferroni test , 1988 .

[54]  R. Simes,et al.  An improved Bonferroni procedure for multiple tests of significance , 1986 .

[55]  J. Shaffer Modified Sequentially Rejective Multiple Test Procedures , 1986 .

[56]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[57]  Philip H. Ramsey Power Differences between Pairwise Multiple Comparisons , 1978 .

[58]  K. Jogdeo,et al.  Association and Probability Inequalities , 1977 .

[59]  Sanford L. Braver,et al.  On Splitting the Tails Unequally: a New Perspective on One-Versus Two-Tailed Tests , 1975 .

[60]  P. Seeger A Note on a Method for the Analysis of Significances en masse , 1968 .

[61]  Z. Šidák Rectangular Confidence Regions for the Means of Multivariate Normal Distributions , 1967 .

[62]  D. Alexander,et al.  The National Institute of Child Health and Human Development , 1965, Nature.

[63]  O. J. Dunn Estimation of the Means of Dependent Variables , 1958 .

[64]  Lillian Gray,et al.  Teaching children to read , 1949 .