Origin of Molecular Oxygen in Comets: Current Knowledge and Perspectives

[1]  K. Giapis,et al.  Reply to “On the origin of molecular oxygen in cometary comae” , 2018, Nature Communications.

[2]  J. Lunine,et al.  Synthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula , 2018, 1804.03478.

[3]  J. Berthelier,et al.  Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko , 2017 .

[4]  P. Feldman,et al.  Stellar Occultation by Comet 67P/Churyumov-Gerasimenko Observed with the R-Alice Ultraviolet Spectrograph , 2017 .

[5]  C. Plainaki,et al.  Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies , 2017 .

[6]  A. Bar-Nun,et al.  Trapping mechanism of O2 in water ice as first measured by Rosetta spacecraft , 2017 .

[7]  M. Wieser,et al.  Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA , 2017 .

[8]  Eric Schindhelm,et al.  H 2 O and O 2 absorption in the coma of comet 67P/Churyumov-Gerasimenko measured by the Alice far-ultraviolet spectrograph on Rosetta , 2017, 1706.01948.

[9]  K. Giapis,et al.  Dynamic molecular oxygen production in cometary comae , 2017, Nature Communications.

[10]  C. Glein,et al.  Alternative Energy: Production of H2 by Radiolysis of Water in the Rocky Cores of Icy Bodies , 2017 .

[11]  J. Lunine,et al.  Impact of Radiogenic Heating on the Formation Conditions of Comet 67P/Churyumov–Gerasimenko , 2017, 1703.04227.

[12]  C. Walsh,et al.  On the origin of O2 and other volatile species in comets , 2017, Proceedings of the International Astronomical Union.

[13]  D. Bockelée-Morvan,et al.  Production of O 2 through dismutation of H 2 O 2 during water ice desorption: a key to understanding comet O 2 abundances , 2017 .

[14]  N. Biver,et al.  Evolution of water production of 67P/Churyumov-Gerasimenko: an empirical model and a multi-instrument study , 2016 .

[15]  C. Walsh,et al.  A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O2 ice from clouds to discs , 2016, 1608.07130.

[16]  J. Lunine,et al.  ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO , 2016, 1604.08831.

[17]  T. Guillot,et al.  A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO , 2016, 1604.08827.

[18]  B. D. Kay,et al.  Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces. , 2016, The journal of physical chemistry. B.

[19]  E. Dishoeck,et al.  Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores , 2015, 1512.04291.

[20]  M. Rubin,et al.  MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY , 2015, 1512.01653.

[21]  J. Berthelier,et al.  ROSINA/DFMS and IES observations of 67P: Ion-neutral chemistry in the coma of a weakly outgassing comet , 2015 .

[22]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[23]  E. Bergin,et al.  Water deuteration and ortho-to-para nuclear spin ratio of H2 in molecular clouds formed via the accumulation of H I gas , 2015, 1510.05135.

[24]  J. Lebreton,et al.  Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko - Observations between 3.6 and 2.0 AU , 2015 .

[25]  T. Owen,et al.  Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko , 2015, Science Advances.

[26]  C. Ceccarelli,et al.  Differential adsorption of CHON isomers at interstellar grain surfaces , 2015 .

[27]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[28]  A. Doressoundiram,et al.  NEUTRAL Na IN COMETARY TAILS AS A REMNANT OF EARLY AQUEOUS ALTERATION , 2015 .

[29]  S. Debei,et al.  Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.

[30]  J. Berthelier,et al.  Rosetta mission results pre-perihelion Special feature ROSINA / DFMS and IES observations of 67 P : Ion-neutral chemistry in the coma of a weakly outgassing comet , 2015 .

[31]  P. Caselli,et al.  HERSCHEL HIFI OBSERVATIONS OF O2 TOWARD ORION: SPECIAL CONDITIONS FOR SHOCK ENHANCED EMISSION , 2014, 1408.1962.

[32]  F. Ciesla THE PHASES OF WATER ICE IN THE SOLAR NEBULA , 2014, 1402.5333.

[33]  Eric Herbst,et al.  Interstellar water chemistry: from laboratory to observations. , 2013, Chemical reviews.

[34]  S. Charnley,et al.  ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS , 2011 .

[35]  J. Brucato,et al.  ON WATER FORMATION IN THE INTERSTELLAR MEDIUM: LABORATORY STUDY OF THE O+D REACTION ON SURFACES , 2011 .

[36]  J. Pilmé,et al.  Differential Adsorption of Complex Organic Molecules Isomers at Interstellar Ices Surfaces , 2011 .

[37]  P. Caselli,et al.  HERSCHEL MEASUREMENTS OF MOLECULAR OXYGEN IN ORION , 2011, 1108.0441.

[38]  L. Observatory,et al.  Chemical History of Molecules in Circumstellar Disks , 2011, Proceedings of the International Astronomical Union.

[39]  K. M. Menten,et al.  Detection of interstellar hydrogen peroxide , 2011, 1105.5799.

[40]  A. Yeghikyan Irradiation of dust in molecular clouds. II. Doses produced by cosmic rays , 2011 .

[41]  R E Johnson,et al.  Cassini Finds an Oxygen–Carbon Dioxide Atmosphere at Saturn’s Icy Moon Rhea , 2010, Science.

[42]  V. Pirronello,et al.  Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms , 2009, 0903.3120.

[43]  Nicolas Fray,et al.  Sublimation of ices of astrophysical interest: A bibliographic review , 2009 .

[44]  M. Accolla,et al.  EXPERIMENTAL EVIDENCE FOR WATER FORMATION VIA OZONE HYDROGENATION ON DUST GRAINS AT 10 K , 2009, 0907.5173.

[45]  A. Kouchi,et al.  FORMATION OF COMPACT AMORPHOUS H2O ICE BY CODEPOSITION OF HYDROGEN ATOMS WITH OXYGEN MOLECULES ON GRAIN SURFACES , 2009 .

[46]  C. Dullemond,et al.  The chemical history of molecules in circumstellar disks - I. Ices , 2009, 0901.1313.

[47]  E. F. Dishoeck,et al.  Laboratory Evidence for Efficient Water Formation in Interstellar Ices , 2008, 0807.0129.

[48]  E. Herbst,et al.  Simulation of the Formation and Morphology of Ice Mantles on Interstellar Grains , 2007, 0707.2744.

[49]  P. Bernath,et al.  Molecular oxygen in the ρ Ophiuchi cloud , 2007, astro-ph/0702474.

[50]  L. Duvet,et al.  Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .

[51]  B. Teolis,et al.  Ozone Synthesis on the Icy Satellites , 2006 .

[52]  B. Teolis,et al.  Distillation kinetics of solid mixtures of hydrogen peroxide and water and the isolation of pure hydrogen peroxide in ultrahigh vacuum. , 2006, The journal of physical chemistry. B.

[53]  B. Teolis,et al.  A Model Study of the Thermal Evolution of Astrophysical Ices , 2006 .

[54]  David T. Young,et al.  Production, ionization and redistribution of O2 in Saturn's ring atmosphere , 2006 .

[55]  T. Onstott,et al.  Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities , 2005 .

[56]  T. Onstott,et al.  The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere , 2005 .

[57]  M. Egan,et al.  Crystalline water ice in OH32.8–0.3 , 2003 .

[58]  J. Richardson,et al.  Proton Irradiation of Centaur, Kuiper Belt, and Oort Cloud Objects at Plasma to Cosmic Ray Energy , 2003 .

[59]  R. Baragiola,et al.  Radiolysis of water ice in the outer solar system: Sputtering and trapping of radiation products , 2001 .

[60]  D. Gautier,et al.  A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets , 2001 .

[61]  T. Orlando,et al.  Production of O2 on icy satellites by electronic excitation of low-temperature water ice , 1998, Nature.

[62]  R. E. Johnson,et al.  Detection of ozone on Saturn's satellites Rhea and Dione , 1997, Nature.

[63]  Robert E. Johnson,et al.  Photolysis and radiolysis of water ice on outer solar system bodies , 1997 .

[64]  Robert E. Johnson,et al.  O2/O3 Microatmospheres in the Surface of Ganymede , 1997 .

[65]  Robert E. Johnson Sputtering of ices in the outer solar system , 1996 .

[66]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[67]  J. Greenberg,et al.  Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices , 1994 .

[68]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[69]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[70]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[71]  J. Lunine,et al.  Sublimation and reformation of icy grains in the primitive solar nebula , 1991 .

[72]  R. E. Johnson Irradiation effects in a comet's outer layers , 1991 .

[73]  J. Tse,et al.  Structure of oxygen clathrate hydrate by neutron powder diffraction , 1986 .

[74]  J. Greenberg,et al.  Time dependent chemistry in dense molecular clouds. I - Grain surface reactions, gas/grain interactions and infrared spectroscopy , 1985 .

[75]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[76]  W. Webber,et al.  A measurement of the energy spectra and relative abundance of the cosmic-ray H and He isotopes over a broad energy range , 1983 .

[77]  Alexander G. G. M. Tielens,et al.  Model calculations of the molecular composition of interstellar grain mantles , 1982 .

[78]  E. Barker,et al.  Detection of Molecular Oxygen in the Martian Atmosphere , 1972, Nature.