Forebody TPS sizing with radiation and ablation for the Stardust Sample Return Capsule

The development of a new high-fidelity methodology for predicting entry flows with coupled radiation and ablation is described. The prediction methodology consists of an axisymmetric, nonequilibrium, Navier-Stokes flow solver loosely coupled to a radiation prediction code and a material thermal response code. The methodology is used to simulate the 12.6 km/s Earth atmospheric entry of the Stardust sample return capsule at seven trajectory points using ablating and nonablating boundary conditions. These flow simulations are used to size and design the Stardust forebody heatshield and develop arc-jet test conditions and models. The paper describes details of the methodology, results from the flow simulations, and, various heatshield design issues.

[1]  Jong-Hun Lee,et al.  Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles , 1984 .

[2]  Graham V. Candler,et al.  Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium , 1991 .

[3]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[4]  E. P. Bartlett,et al.  An analysis of the coupled chemically reacting boundary layer and charring ablator. Part 4 - A unified approximation for mixture transport properties for multicomponent boundary-layer applications , 1968 .

[5]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[6]  J. Heicklen Gas-phase chemistry of re-entry. , 1967 .

[7]  R. Maccormack,et al.  Practical Navier-Stokes computation of axisymmetric reentry flowfields with coupled ablation and shape change , 1992 .

[8]  F. Milos,et al.  Comprehensive model for multicomponent ablation thermochemistry , 1997 .

[9]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[10]  T. J. Barber,et al.  Role of hydrogen/air chemistry in nozzle performance for a hypersonic propulsion system , 1993 .

[11]  Takehiko Shimanouchi,et al.  Tables of molecular vibrational frequencies. Consolidated volume II , 1972 .

[12]  Lin Hartung Chambers,et al.  Predicting radiative heat transfer in thermochemical nonequilibrium flow fields. Theory and user's manual for the LORAN code , 1994 .

[13]  K. Wilson Stagnation point analysis of coupled viscous- radiating flow with massive blowing , 1970 .

[14]  J. Wilson Ionization Rate of Air behind High‐Speed Shock Waves , 1966 .

[15]  Robert B. Greendyke,et al.  Convective and radiative heat transfer analysis for the Fire II forebody , 1994 .

[16]  C. Lin,et al.  Coupled Radiation Effects in Thermochemical Nonequilibrium Shock-Capturing Flowfield Calculations , 1994 .

[17]  B. Bhutta,et al.  A new technique for the computation of severe reentry environments , 1996 .

[18]  W. Henline,et al.  Comparison of Coupled Radiative Navier-Stokes Flow Solutions with the Project Fire II Flight Data , 1994 .

[19]  Graham V. Candler,et al.  Simulation of graphite sublimation and oxidation under re-entry conditions , 1994 .

[20]  Vladimir V. Riabov,et al.  Approximate calculation of transport coefficients of Earth and Mars atmospheric dissociating gases , 1995 .

[21]  Yih-Kanq Chen,et al.  Hypersonic nonequilibrium Navier-Stokes solutions over an ablating graphite nosetip , 1994 .

[22]  Yih-Kanq Chen,et al.  Wake flow calculations with ablation for the Stardust Sample Return Capsule , 1997 .

[23]  Ethiraj Venkatapathy,et al.  The multidimensional self-adaptive grid code, SAGE , 1992 .

[24]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[25]  Richard G. Wilmoth,et al.  Aerodynamics of Stardust Sample Return Capsule , 1997 .

[26]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[27]  C. Lewis,et al.  A new technique for low-to-high altitude predictions of ablative hypersonic flowfields , 1991 .

[28]  Graham V. Candler,et al.  Comparison of coupled radiative flow solutions with Project Fire II flight data , 1995 .

[29]  F. Blottner,et al.  Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures. , 1971 .

[30]  M. E. Tauber,et al.  Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .

[31]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[32]  Kam-Pui Lee,et al.  Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry , 1990 .

[33]  Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle , 1994 .

[34]  Richard G. Wilmoth,et al.  Aerodynamics of Stardust Sample Return Capsule , 1997 .

[35]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[36]  H. Tran,et al.  Phenolic Impregnated Carbon Ablators (PICA) for Discovery class missions , 1996 .

[37]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[38]  Dean Kontinos,et al.  Coupled Thermal Analysis Method with Application to Metallic Thermal Protection Panels , 1997 .