Overlapping Schwarz methods with GenEO coarse spaces for indefinite and non-self-adjoint problems

GenEO (‘Generalised Eigenvalue problems on the Overlap’) is a method for computing an operator-dependent spectral coarse space to be combined with local solves on subdomains to form a robust parallel domain decomposition preconditioner for elliptic PDEs. It has previously been proved, in the self-adjoint and positive-definite case, that this method, when used as a preconditioner for conjugate gradients, yields iteration numbers which are completely independent of the heterogeneity of the coefficient field of the partial differential operator. We extend this theory to the case of convection–diffusion–reaction problems, which may be non-self-adjoint and indefinite, and whose discretisations are solved with preconditioned GMRES. The GenEO coarse space is defined here using a generalised eigenvalue problem based on a self-adjoint and positive-definite subproblem. We obtain GMRES iteration counts which are independent of the variation of the coefficient of the diffusion term in the operator and depend only very mildly on the variation of the other coefficients. While the iteration number estimates do grow as the non-self-adjointness and indefiniteness of the operator increases, practical tests indicate the deterioration is much milder. Thus we obtain an iterative solver which is efficient in parallel and very effective for a wide range of convection–diffusion– reaction problems. MSC Classes: 65N22, 65N55, 65F10

[1]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[2]  Yalchin Efendiev,et al.  On overlapping domain decomposition methods for high-contrast multiscale problems , 2017, 1705.09004.

[3]  Chupeng Ma,et al.  GenEO coarse spaces for heterogeneous indefinite elliptic problems , 2021, ArXiv.

[4]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[5]  Xiao-Chuan Cai,et al.  Some observations on the l2 convergence of the additive Schwarz preconditioned GMRES method , 2002, Numer. Linear Algebra Appl..

[6]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[7]  Nicole Spillane,et al.  Toward a new fully algebraic preconditioner for symmetric positive definite problems , 2021, ArXiv.

[8]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[9]  Fr'ed'eric Nataf Ljll,et al.  A GenEO Domain Decomposition method for Saddle Point problems , 2019, Comptes Rendus. Mécanique.

[10]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .

[11]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[12]  Joseph E. Pasciak,et al.  Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations , 2003, Math. Comput..

[13]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[14]  Shihua Gong,et al.  Domain decomposition preconditioners for high-order discretisations of the heterogeneous Helmholtz equation , 2020, ArXiv.

[15]  Pierre-Henri Tournier,et al.  A comparison of coarse spaces for Helmholtz problems in the high frequency regime , 2020, Comput. Math. Appl..

[16]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[17]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[18]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[19]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[20]  Emmanuel Agullo,et al.  Robust Preconditioners via Generalized Eigenproblems for Hybrid Sparse Linear Solvers , 2019, SIAM J. Matrix Anal. Appl..

[21]  Frédéric Nataf,et al.  High performance domain decomposition methods on massively parallel architectures with freefem++ , 2012, J. Num. Math..

[22]  Frédéric Nataf,et al.  A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator , 2014, J. Comput. Appl. Math..

[23]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[24]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[25]  Junping Wang,et al.  Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions , 1996, Math. Comput..

[26]  Chupeng Ma,et al.  Novel design and analysis of generalized FE methods based on locally optimal spectral approximations , 2021, ArXiv.

[27]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[28]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[29]  Axel Klawonn,et al.  Adaptive GDSW Coarse Spaces for Overlapping Schwarz Methods in Three Dimensions , 2019, SIAM J. Sci. Comput..

[30]  Chupeng Ma,et al.  Error estimates for fully discrete generalized FEMs with locally optimal spectral approximations , 2021, ArXiv.

[31]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[32]  Eero Vainikko,et al.  Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption , 2015, Math. Comput..

[33]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[34]  Victorita Dolean,et al.  On the Dirichlet-to-Neumann coarse space for solving the Helmholtz problem using domain decomposition , 2019, ENUMATH.

[35]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..