Unexpected tails of a Ca2+ sensor.

[1]  K. Palczewski,et al.  Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. , 2007, Structure.

[2]  R. Burgoyne,et al.  Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling , 2007, Nature Reviews Neuroscience.

[3]  R. Burgoyne,et al.  High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. , 2005, The Biochemical journal.

[4]  A. Tepikin,et al.  Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells , 2003, The Journal of cell biology.

[5]  C. Spilker,et al.  Reversible Translocation and Activity-Dependent Localization of the Calcium–Myristoyl Switch Protein VILIP-1 to Different Membrane Compartments in Living Hippocampal Neurons , 2002, The Journal of Neuroscience.

[6]  M. Ashby,et al.  Differential Use of Myristoyl Groups on Neuronal Calcium Sensor Proteins as a Determinant of Spatio-temporal Aspects of Ca2+ Signal Transduction* , 2002, The Journal of Biological Chemistry.

[7]  J. Thorner,et al.  Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. , 2000, Biochemistry.

[8]  A. Bird,et al.  A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. , 1998, Human molecular genetics.

[9]  L. Stryer,et al.  Molecular mechanics of calcium–myristoyl switches , 1997, Nature.

[10]  H. Kawasaki,et al.  Calcium-binding proteins 1: EF-hands. , 1995, Protein profile.