Some properties of analytical functions related to Borel distribution series

In this paper, we introduce and study a new subclass of analytic functions which are defined by means of a linear operator. Some results connected to coefficient estimates, growth and distortion theorems, radii of starlikeness, convexity close-to-convexity and integral means inequalities related to the subclass is obtained.

[1]  R. N. Ingle,et al.  On a certain subclass of analytic functions defined by a differential operator , 2023, Malaya Journal of Matematik.

[2]  G. Murugusundaramoorthy,et al.  Bi-Bazilevič functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials , 2021, Journal of Mathematics and Computer Science.

[3]  Nazek Alessa,et al.  A New Subclass of Analytic Functions Related to Mittag-Leffler Type Poisson Distribution Series , 2021 .

[4]  A. Wanas,et al.  Applications of Borel Distribution Series on Analytic Functions , 2020 .

[5]  F. Yousef,et al.  Some properties of a linear operator involving generalized Mittag-Leffler function , 2020 .

[6]  B. Frasin An Application of an Operator Associated with Generalized Mittag-Leffler Function , 2019 .

[7]  Sarfraz Nawaz Malik,et al.  Certain geometric properties of Mittag-Leffler functions , 2019, Journal of Inequalities and Applications.

[8]  A. A. Attiya,et al.  Some Applications of Mittag-Leffler Function in the Unit Disk , 2016 .

[9]  M. Garg,et al.  A Mittag-Leffler-type function of two variables , 2013 .

[10]  Qin Deng,et al.  On univalent functions with negative coefficients , 2007, Appl. Math. Comput..

[11]  H. Silverman A Survey with Open Problems on Univalent Functions Whose Coefficients are Negative , 1991 .

[12]  A. Wiman,et al.  Über die Nullstellen der FunktionenEa(x) , 1905 .

[13]  H. Srivastava,et al.  Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type , 2021, Journal of Nonlinear and Variational Analysis.

[14]  W. Hayman Inequalities in the Theory of Functions , 1949 .