Local jet pattern: a robust descriptor for texture classification

Methods based on locally encoded image features have recently become popular for texture classification tasks, particularly in the existence of large intra-class variation due to changes in illumination, scale, and viewpoint. Inspired by the theories of image structure analysis, this work proposes an efficient, simple, yet robust descriptor namely local jet pattern ( Ljp ) for texture classification. In this approach, a jet space representation of a texture image is computed from a set of derivatives of Gaussian (DtGs) filter responses up to second order, so-called local jet vectors ( Ljv ), which also satisfy the Scale Space properties. The Ljp is obtained by using the relation of center pixel with its’ local neighborhoods in jet space. Finally, the feature vector of a texture image is formed by concatenating the histogram of Ljp for all elements of Ljv . All DtGs responses up to second order together preserves the intrinsic local image structure, and achieves invariance to scale, rotation, and reflection. This allows us to design a discriminative and robust framework for texture classification. Extensive experiments on five standard texture image databases, employing nearest subspace classifier ( Nsc ), the proposed descriptor achieves 100%, 99.92%, 99.75%, 99.16%, and 99.65% accuracy for Outex_TC10, Outex_TC12, KTH-TIPS, Brodatz, CUReT, respectively, which are better compared to state-of-the-art methods.

[1]  Isaac Weiss,et al.  Geometric invariants and object recognition , 1993, International Journal of Computer 11263on.

[2]  Bhabatosh Chanda,et al.  Local morphological pattern: A scale space shape descriptor for texture classification , 2018, Digit. Signal Process..

[3]  Lewis D. Griffin The Second Order Local-Image-Structure Solid , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[7]  Jonathan D. Victor,et al.  Simultaneously Band and Space Limited Functions in Two Dimensions, and Receptive Fields of Visual Neurons , 2003 .

[8]  Yong Xu,et al.  A Projective Invariant for Textures , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Hai Jin,et al.  Weighting scheme for image retrieval based on bag-of-visual-words , 2014, IET Image Process..

[10]  Baochang Zhang,et al.  Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor , 2010, IEEE Transactions on Image Processing.

[11]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[13]  Guoying Zhao,et al.  BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification , 2014, IEEE Transactions on Image Processing.

[14]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[15]  Iasonas Kokkinos,et al.  Deep Filter Banks for Texture Recognition, Description, and Segmentation , 2015, International Journal of Computer Vision.

[16]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[17]  Bidyut Baran Chaudhuri,et al.  Texture Segmentation Using Fractal Dimension , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[20]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[21]  David A. Clausi,et al.  Gaussian MRF rotation-invariant features for image classification , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Ahmad Reza Naghsh-Nilchi,et al.  Noise tolerant local binary pattern operator for efficient texture analysis , 2012, Pattern Recognit. Lett..

[25]  Kai Wang,et al.  Pixel to Patch Sampling Structure and Local Neighboring Intensity Relationship Patterns for Texture Classification , 2013, IEEE Signal Processing Letters.

[26]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  W. C. Guenther,et al.  Analysis of variance , 1968, The Mathematical Gazette.

[28]  Shu-Yuan Chen,et al.  Retrieval of translated, rotated and scaled color textures , 2003, Pattern Recognit..

[29]  Yi Yang,et al.  Bi-Level Semantic Representation Analysis for Multimedia Event Detection , 2017, IEEE Transactions on Cybernetics.

[30]  Yi Yang,et al.  Semantic Pooling for Complex Event Analysis in Untrimmed Videos , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Zhihui Li,et al.  Beyond Trace Ratio: Weighted Harmonic Mean of Trace Ratios for Multiclass Discriminant Analysis , 2017, IEEE Transactions on Knowledge and Data Engineering.

[32]  Lei Zhu,et al.  Learning Compact Visual Representation with Canonical Views for Robust Mobile Landmark Search , 2016, IJCAI.

[33]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[34]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, AMFG.

[35]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[36]  Jun Zhang,et al.  Local Energy Pattern for Texture Classification Using Self-Adaptive Quantization Thresholds , 2013, IEEE Transactions on Image Processing.

[37]  SchmidCordelia,et al.  A Sparse Texture Representation Using Local Affine Regions , 2005 .

[38]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[39]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[40]  Yong Xu,et al.  A distinct and compact texture descriptor , 2014, Image Vis. Comput..

[41]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[42]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: II. Cortical data. , 2001, Spatial vision.

[43]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[44]  Matti Pietikäinen,et al.  Evaluation of LBP and Deep Texture Descriptors with a New Robustness Benchmark , 2016, ECCV.

[45]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[46]  ZhuLei,et al.  Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval , 2016 .

[47]  Manik Varma,et al.  Locally Invariant Fractal Features for Statistical Texture Classification , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[48]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[49]  Bhabatosh Chanda,et al.  A novel cancelable iris recognition system based on feature learning techniques , 2017, Inf. Sci..

[50]  Zhenhua Guo,et al.  Robust Texture Image Representation by Scale Selective Local Binary Patterns , 2016, IEEE Transactions on Image Processing.

[51]  Shiv Ram Dubey,et al.  Local SVD based NIR face retrieval , 2017, J. Vis. Commun. Image Represent..

[52]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[53]  Bhabatosh Chanda,et al.  Local directional ZigZag pattern: A rotation invariant descriptor for texture classification , 2018, Pattern Recognit. Lett..

[54]  Guizhong Liu,et al.  Scale- and Rotation-Invariant Local Binary Pattern Using Scale-Adaptive Texton and Subuniform-Based Circular Shift , 2012, IEEE Transactions on Image Processing.

[55]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[56]  Shiv Ram Dubey,et al.  Local Wavelet Pattern: A New Feature Descriptor for Image Retrieval in Medical CT Databases , 2015, IEEE Transactions on Image Processing.

[57]  Xudong Jiang,et al.  Noise-Resistant Local Binary Pattern With an Embedded Error-Correction Mechanism , 2013, IEEE Transactions on Image Processing.

[58]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[59]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[60]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[61]  Lei Zhu,et al.  Topic Hypergraph Hashing for Mobile Image Retrieval , 2015, ACM Multimedia.

[62]  ZissermanAndrew,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009 .

[63]  A. Kundu,et al.  Rotation and Gray Scale Transform Invariant Texture Identification using Wavelet Decomposition and Hidden Markov Model , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.

[66]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[67]  Shiv Ram Dubey,et al.  A multi-channel based illumination compensation mechanism for brightness invariant image retrieval , 2015, Multimedia Tools and Applications.

[68]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[69]  Paul F. Whelan,et al.  Using filter banks in Convolutional Neural Networks for texture classification , 2016, Pattern Recognit. Lett..

[70]  Xiaojun Chang,et al.  Feature Interaction Augmented Sparse Learning for Fast Kinect Motion Detection , 2017, IEEE Transactions on Image Processing.

[71]  Paul W. Fieguth,et al.  Texture Classification from Random Features , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Shiv Ram Dubey,et al.  Multichannel Decoded Local Binary Patterns for Content-Based Image Retrieval , 2016, IEEE Transactions on Image Processing.

[73]  Gudmund R. Iversen,et al.  Analysis of Variance , 2011, International Encyclopedia of Statistical Science.

[74]  Subhransu Maji,et al.  Deep filter banks for texture recognition and segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[76]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[77]  Bhabatosh Chanda,et al.  A Complete Dual-Cross Pattern for Unconstrained Texture Classification , 2017, 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR).

[78]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[79]  Lei Zhu,et al.  Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval , 2016, Multimedia Tools and Applications.

[80]  Shiv Ram Dubey,et al.  Rotation and Illumination Invariant Interleaved Intensity Order-Based Local Descriptor , 2014, IEEE Transactions on Image Processing.

[81]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Shyamala C. Doraisamy,et al.  Texture classification and discrimination for region-based image retrieval , 2015, J. Vis. Commun. Image Represent..

[83]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[84]  Lewis D. Griffin,et al.  Image Features and the 1-D, 2nd Order Gaussian Derivative Jet , 2005, Scale-Space.

[85]  Xianghua Xie,et al.  A Galaxy of Texture Features , 2008 .