Sample Efficient Estimation and Recovery in Sparse FFT via Isolation on Average
暂无分享,去创建一个
[1] M. Lustig,et al. Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.
[2] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[3] Yang Wang,et al. Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..
[4] Mikhail Kapralov,et al. Sparse fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time , 2016, STOC.
[5] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[6] Eyal Kushilevitz,et al. Learning decision trees using the Fourier spectrum , 1991, STOC '91.
[7] Piotr Indyk,et al. (Nearly) Sample-Optimal Sparse Fourier Transform , 2014, SODA.
[8] Eric Price,et al. Efficient sketches for the set query problem , 2010, SODA '11.
[9] Sudipto Guha,et al. Near-optimal sparse fourier representations via sampling , 2002, STOC '02.
[10] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[11] Piotr Indyk,et al. Sample-optimal average-case sparse Fourier Transform in two dimensions , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[12] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[13] Volkan Cevher,et al. An adaptive sublinear-time block sparse fourier transform , 2017, STOC.
[14] Venkatesan Guruswami,et al. Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes , 2012, SIAM J. Comput..
[15] Stefan Kunis,et al. A sparse Prony FFT , 2013 .
[16] Emmanuel J. Candès,et al. A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.
[17] J. Bourgain. An Improved Estimate in the Restricted Isometry Problem , 2014 .
[18] M. Rudelson,et al. On sparse reconstruction from Fourier and Gaussian measurements , 2008 .
[19] Yang Wang,et al. Adaptive sub-linear Fourier algorithms , 2012, ArXiv.
[20] Oded Regev,et al. The Restricted Isometry Property of Subsampled Fourier Matrices , 2015, SODA.
[21] David P. Woodruff,et al. Lower bounds for sparse recovery , 2010, SODA '10.
[22] Volkan Cevher,et al. What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid , 2015, Algorithmica.
[23] Piotr Indyk,et al. Faster GPS via the sparse fourier transform , 2012, Mobicom '12.
[24] Ely Porat,et al. Approximate sparse recovery: optimizing time and measurements , 2009, STOC '10.
[25] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[26] Yishay Mansour,et al. Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..
[27] Moses Charikar,et al. Finding frequent items in data streams , 2002, Theor. Comput. Sci..
[28] Anna C. Gilbert,et al. Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.
[29] M. A. Iwen,et al. Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.
[30] Shafi Goldwasser,et al. Proving hard-core predicates using list decoding , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[31] Zhao Song,et al. A Robust Sparse Fourier Transform in the Continuous Setting , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[32] Xue Chen,et al. Fourier-Sparse Interpolation without a Frequency Gap , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[33] Leonid A. Levin,et al. A hard-core predicate for all one-way functions , 1989, STOC '89.