Mechanisms of Magneto- and Electro-Rheology: Recent Progress and Unresolved Issues

Abstract An electrorheological fluid (ERF) (magnetorheological fluid - MRF) is a particulate suspension which shows a dramatic increase in flow resistance upon application of an external electric (magnetic) field. In both systems, the fundamental physical process is believed to be that the field induces polarization of each particle with respect to the carrier material, and the resulting interparticle forces cause elongated aggregates of particles to form in the field direction. While recent years have witnessed the appearance of several applications using these tunable flow properties, optimal use of this technology is still hindered by our incomplete understanding of the underlying mechanisms. This paper surveys our current understanding of several of the key issues governing the rheological behavior of MRF and ERF, with particular focus on recent progress made in important areas such as the behavior under high fields, sedimentation, temperature dependence, effect of wall surface conditions, and advances made in developing practical modelling strategies.

[1]  C. Rogers,et al.  Magnetorheological Fluids: Materials, Characterization, and Devices , 1996 .

[2]  Toshio Kurauchi,et al.  Magnetroviscoelastic behavior of composite gels , 1995 .

[3]  H. J. Richter,et al.  MR FLUIDS WITH NANO-SIZED MAGNETIC PARTICLES , 1996 .

[4]  James E. Martin,et al.  STRUCTURE AND DYNAMICS OF ELECTRORHEOLOGICAL FLUIDS , 1998 .

[5]  Zvi Rigbi,et al.  The response of an elastomer filled with soft ferrite to mechanical and magnetic influences , 1983 .

[6]  Howard See,et al.  MODEL OF STRUCTURE AND CONDUCTION IN AN ELECTRORHEOLOGICAL FLUID UNDER FLOW , 1996 .

[7]  J. Carlson,et al.  Viscoelastic Properties of Magneto- and Electro-Rheological Fluids , 1994 .

[8]  E. Furst,et al.  Micromechanics of magnetorheological suspensions. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  J. C. Ruiz-Suárez,et al.  Sound in a Magnetorheological Slurry , 1999 .

[10]  J. E. Martin,et al.  Magnetic-field-induced optical transmittance in colloidal suspensions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  A. Gast,et al.  LOW-ENERGY SUSPENSION STRUCTURE OF A MAGNETORHEOLOGICAL FLUID , 1997 .

[12]  John Matthew Ginder,et al.  Synthesis and Properties of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility , 1999 .

[13]  Yakov Khodorkovsky,et al.  Electrorheological Squeeze-Flow Shock Absorber , 1999 .

[14]  J. Rabinow The magnetic fluid clutch , 1948, Electrical Engineering.

[15]  A. Gast,et al.  Structure evolution in a paramagnetic latex suspension , 1992 .

[16]  R. Tao,et al.  Structural transitions of an electrorheological and magnetorheological fluid , 1998 .

[17]  Georges Bossis,et al.  Field induced structure in magneto and electro-rheological fluids , 1992 .

[18]  Hans Conrad,et al.  An analytical model for magnetorheological fluids , 2000 .

[19]  Daniel J. Klingenberg,et al.  Studies on the steady-shear behavior of electrorheological suspensions , 1990 .

[20]  M. Sumita,et al.  Relationship between electric current and matrix modulus in electrorheological elastomers , 2001 .

[21]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[22]  Fuller,et al.  Structure and dynamics of magnetorheological fluids in rotating magnetic fields , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  H. P. Block,et al.  REVIEW ARTICLE: Electro-rheology , 1988 .

[24]  R. Anderson,et al.  Anisotropic magnetism in field-structured composites , 1999 .

[25]  Daniel J. Klingenberg,et al.  Magnetorheology in viscoplastic media , 1999 .

[26]  The response of electrorheological fluid under oscillatory squeeze flow , 1999 .

[27]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[28]  D. Klingenberg,et al.  A continuum approach to electrorheology , 1999 .

[29]  G. Bossis,et al.  Yield stress and wall effects in magnetic colloidal suspensions , 1991 .

[30]  J. M. Ginder,et al.  Shear stresses in magnetorheological fluids: Role of magnetic saturation , 1994 .

[31]  L. C. Davis,et al.  RHEOLOGY OF MAGNETORHEOLOGICAL FLUIDS: MODELS AND MEASUREMENTS , 1996 .

[32]  Mártin,et al.  Aggregation, fragmentation, and the nonlinear dynamics of electrorheological fluids in oscillatory shear. , 1995, Physical review letters.

[33]  Charles F. Zukoski,et al.  Material Properties and the Electrorheological Response , 1993 .

[34]  R. E. Rosensweig,et al.  On magnetorheology and electrorheology as states of unsymmetric stress , 1995 .

[35]  L. C. Davis Model of magnetorheological elastomers , 1999 .

[36]  T. Jones,et al.  Interparticle force measurements on ferromagnetic steel balls , 1993 .

[37]  M. Parthasarathy,et al.  A microstructural investigation of the nonlinear response of electrorheological suspensions , 1995 .

[38]  Effect of Electrode Pattern on the Column Structure and Yield Stress of Electrorheological Fluids , 1997, Journal of colloid and interface science.

[39]  Georges Bossis,et al.  Influence of the particle size on the rheology of magnetorheological fluids , 1995 .

[40]  Jing Liu,et al.  Rheology of a Magnetorheological Fluid , 1996 .

[41]  Keith D. Weiss,et al.  Controllable Fluids:. the Temperature Dependence of Post-Yield Properties , 1994 .

[42]  G. V. Vinogradov,et al.  Electric fields in the rheology of disperse systems , 1984 .

[43]  J. Carlson,et al.  A model of the behaviour of magnetorheological materials , 1996 .

[44]  Mark R. Jolly,et al.  Indirect Measurements of Microstructure Development in Magnetorheological Fluids , 1999 .

[45]  Weijia Wen,et al.  Ground States of Magnetorheological Fluids , 1998 .

[46]  Robert A. Anderson,et al.  Chain model of electrorheology , 1996 .

[47]  R. E. Rosensweig,et al.  Magnetorheological fluid composites , 1996 .

[48]  B. Abu-Jdayil,et al.  Effects of electrode morphology on the slit flow of an electrorheological fluid , 1996 .

[49]  Shigeo Asai,et al.  Suspension of layered particles: an optimum electrorheological fluid for d.c. applications , 1999 .

[50]  Tasuku Saito,et al.  Layered model of electrorheological fluid under flow , 1996 .

[51]  Daniel J. Klingenberg,et al.  Electro- and magneto-rheology , 1998 .

[52]  R. Sakurai,et al.  The effect of blending particles with different conductivity on electrorheological properties , 1996 .

[53]  P. Atten,et al.  The role of conduction in electrorheological fluids : from interaction between particles to structuration of suspensions , 1997 .

[54]  X. Tang,et al.  Structure-enhanced yield stress of magnetorheological fluids , 2000 .

[55]  H. Block,et al.  Materials and mechanisms in electrorheology , 1990 .

[56]  G. Bossis,et al.  Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions , 1998 .

[57]  C. Zukoski,et al.  Electrorheological fluids as colloidal suspensions , 1989 .

[58]  Mark R. Jolly,et al.  The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix , 1996 .

[59]  Anhydrous Electrorheological Fluid Using Carbonaceous Particulate as Dispersed Phase , 1995 .

[60]  M. Sumita,et al.  Effect of matrix viscoelasticity on the electrorheological properties of particle suspensions , 1999 .

[61]  N. Willenbacher,et al.  Rheometry on magnetorheological (MR) fluids , 1996 .

[62]  D. Klingenberg,et al.  A THERMODYNAMIC APPROACH TO FIELD-INDUCED STRESSES IN ELECTRO- AND MAGNETOACTIVE COMPOSITES , 2001 .

[63]  H. See Constitutive equation for electrorheological fluids based on the chain model , 2000 .

[64]  Hans Conrad,et al.  Quasistatic measurements on a magnetorheological fluid , 1996 .