Pressure tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons

[1]  Y. Son,et al.  Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices , 2022, Nature Materials.

[2]  R. Comin,et al.  Electronic Band Tuning and Multivalley Raman Scattering in Monolayer Transition Metal Dichalcogenides at High Pressures. , 2022, ACS nano.

[3]  Xiaodong Xu,et al.  Excited Rydberg states in MoSe2/WSe2 heterostructures , 2021, 2D Materials.

[4]  B. Monserrat,et al.  Moiré phonons in twisted MoSe2–WSe2 heterobilayers and their correlation with interlayer excitons , 2021, 2D Materials.

[5]  K. Kern,et al.  Synthesis of High-Performance Monolayer Molybdenum Disulfide at Low Temperature. , 2021, Small methods.

[6]  V. Fal’ko,et al.  Band energy landscapes in twisted homobilayers of transition metal dichalcogenides , 2021, 2103.06320.

[7]  Jesse S. Smith,et al.  Hard, transparent, sp3-containing 2D phase formed from few-layer graphene under compression , 2021, Carbon.

[8]  V. Fal’ko,et al.  Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers , 2021 .

[9]  J. Lupton,et al.  Large‐Scale Mapping of Moiré Superlattices by Hyperspectral Raman Imaging , 2020, Advanced materials.

[10]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[11]  Xiaodong Xu,et al.  Superposition of intra- and inter-layer excitons in twistronic MoSe2/WSe2 bilayers probed by resonant Raman scattering , 2020, 2010.02112.

[12]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[13]  Jorge Quereda,et al.  Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy , 2020, 2004.02526.

[14]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[15]  C. Robert,et al.  Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition , 2020, Nature Communications.

[16]  A. Bostwick,et al.  Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist , 2019, Nature Physics.

[17]  Xiaodong Xu,et al.  Visualizing electrostatic gating effects in two-dimensional heterostructures , 2019, Nature.

[18]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[19]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[20]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[21]  Jiangbin Wu,et al.  Moiré Phonons in Twisted Bilayer MoS2. , 2018, ACS nano.

[22]  M. Moutinho,et al.  Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures , 2018, Nature Communications.

[23]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[24]  Kenji Watanabe,et al.  Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2 , 2017, Nature Materials.

[25]  K. Thygesen Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures , 2017 .

[26]  M. Terrones,et al.  Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy , 2017, Nature Communications.

[27]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[28]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[29]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[30]  Kenji Watanabe,et al.  Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. , 2015, Nano letters.

[31]  D. Akinwande,et al.  Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. , 2015, Nano letters.

[32]  M. Terrones,et al.  Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. , 2014, ACS nano.

[33]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[34]  A. Neto,et al.  Photocarrier relaxation in two-dimensional semiconductors , 2014, 1402.0286.

[35]  A. Jorio,et al.  Raman spectroscopy of twisted bilayer graphene , 2013 .

[36]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[37]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[38]  C. Achete,et al.  Raman signature of graphene superlattices. , 2011, Nano letters.

[39]  Ji-yang Wang,et al.  Invited article: High-pressure techniques for condensed matter physics at low temperature. , 2010, The Review of scientific instruments.

[40]  N. Tateiwa,et al.  Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. , 2009, The Review of scientific instruments.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  A. G. S. Filho,et al.  Raman scattering studies of graphene under high pressure , 2017 .