Static and dynamic numerical simulations of a generic UCAV configuration with and without control devices

A contribution for the assessment of the static and dynamic aerodynamic behavior of a generic UCAV configuration with control devices using CFD methods is given. For the CFD simulations the unstructured grid based DLR TAU-Code and the structured grid based NLR solver ENSOLV are used. The numerical methods are verified by experimental wind tunnel data. The current investigations should provide a contribution to assess the prediction capability of control device effectiveness using CFD methods. The presented computational results for the assessment will be validated by dedicated experimental data. Furthermore, it should support the understanding of the flow physics around the trailing edge control devices of highly swept configurations with a vortex dominated flow field. Design requirements should be able draw by analyzing the interaction between the vortical flow and the control devices. The present work is part of the NATO STO/AVT Task Group AVT-201 on Stability and Control prediction methods

[1]  Andreas Schütte,et al.  Overview of Stability and Control Estimation Methods from NATO STO Task Group AVT-201 , 2013 .

[2]  Perry L. Johnson,et al.  Reynolds-Averaged Navier-Stokes Solutions to Flat Plate Film Cooling Scenarios , 2011 .

[3]  Stefan Görtz,et al.  Description of the F-16XL Geometry and Computational Grids Used in CAWAPI , 2007 .

[4]  Stephan M. Hitzel,et al.  Flow Physics Analyses of a Generic Unmanned Combat Aerial Vehicle Configuration , 2012 .

[5]  S. P. Spekreijse,et al.  ENFLOW a full-functionality system of CFD codes for industrial Euler/Navier-Stokes flow computations , 1996 .

[6]  Russell M. Cummings,et al.  The NATO STO Task Group AVT-201 on Extended Assessment of Stability and Control Prediction Methods for NATO Air Vehicles , 2014 .

[7]  Andreas-René Hübner,et al.  Integrated Experimental and Numerical Research on the Aerodynamics of Unsteady Moving Aircraft , 2007 .

[8]  Russell M. Cummings,et al.  Integrated Computational/Experimental Approach to Unmanned Combat Air Vehicle Stability and Control Estimation , 2012 .

[9]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[10]  T. Gerhold,et al.  Technical Documentation of the DLR T-Code , 1997 .

[11]  Bambang I. Soemarwoto,et al.  X-LES Simulations Using a High-Order Finite-Volume Scheme , 2008 .

[12]  O. J. Boelens,et al.  Comparison of Measured and Block Structured Simulation Results for the F-16XL Aircraft , 2009 .

[13]  O. J. Boelens,et al.  Prediction of the flow around the X-31 aircraft using three different CFD methods , 2012 .

[14]  Jean-Claude Monnier,et al.  Stereoscopic Particle Image Velocimetry Flowfield Investigation of an Unmanned Combat Air Vehicle , 2012 .

[15]  T. Gerhold,et al.  Calculation of Complex Three-Dimensional Configurations Employing the DLR-tau-Code , 1997 .

[16]  Henry Dol,et al.  Leading edge vortex flow computations and comparison with DNW-HST wind tunnel data , 2001 .

[17]  Steve L. Karman,et al.  Reynolds-Averaged Navier-Stokes Solutions for the CAWAPI F-16XL Using Different Hybrid Grids , 2009 .

[18]  G. Redeker,et al.  A new vortex flow experiment for computer code validation , 2001 .

[19]  Thomas Gerhold,et al.  Overview of the Hybrid RANS Code TAU , 2005 .

[20]  Martin Rein,et al.  High speed static experimental investigations to estimatecontrol device effectiveness and S&C capabilities , 2014 .

[21]  James M. Luckring,et al.  What was Learned from the New VFE-2 Experiments. Chapter 24 , 2008 .

[22]  Georgi Kalitzin,et al.  Turbulence modeling in an immersed-boundary RANS method , 2022 .

[23]  Stefan Görtz,et al.  Standard Unstructured Grid Solutions for Cranked Arrow Wing Aerodynamics Project International F-16XL , 2009 .

[24]  Heinrich Lüdeke,et al.  Numerical investigations on the VFE-2 65-degree rounded leading edge delta wing using the unstructured DLR TAU-Code , 2013 .

[25]  Henry Dol,et al.  EXTRA-LARGE EDDY SIMULATION OF MASSIVELY SEPARATED FLOWS , 2004 .

[26]  Dan D. Vicroy,et al.  UCAV model design and static experimental investigations to estimate control device effectiveness and S&C capabilities , 2014 .

[27]  John E. Lamar,et al.  Overview of the Cranked-Arrow Wing Aerodynamics Project International , 2009 .

[28]  Forrester T. Johnson,et al.  Modi cations and Clari cations for the Implementation of the Spalart-Allmaras Turbulence Model , 2011 .

[29]  Russell M. Cummings,et al.  What Was Learned From the Numerical Simulations for the VFE-2 , 2008 .

[30]  D Hummel,et al.  The Second International Vortex Flow Experiment (VFE-2): Objectives and first results , 2006 .

[31]  O. J. Boelens,et al.  CFD Analysis of the Flow Around the X-31 Aircraft at High Angle of Attack , 2009 .

[32]  Michel Visonneau,et al.  Assessment of Stability and Control Prediction Methods for NATO Air and Sea Vehicles. RTO-TR-AVT-161 , 2012 .

[33]  Ralf Heinrich,et al.  The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .

[34]  J. C. Kok,et al.  Resolving the dependence on free-stream values for the k-omega turbulence model , 1999 .

[35]  Kerstin Claudie Huber,et al.  Conceptual Design and Aerodynamic Analyses of a Generic UCAV Configuration , 2014 .

[36]  Dietrich Hummel,et al.  Review of the Second International Vortex Flow Experiment (VFE-2) , 2008 .

[37]  H. Dol,et al.  Turbulence modelling for leading-edge vortex flows , 2002 .

[38]  Neal T. Frink,et al.  Three Unstructured Computational Fluid Dynamics Studies on Generic Unmanned Combat Aerial Vehicle , 2012 .

[39]  Rolf Radespiel,et al.  Differential Reynolds-Stress Modeling for Aeronautics , 2015 .

[40]  James M. Luckring,et al.  What was learned from the new VFE-2 experiments ☆ , 2013 .

[41]  Dan D. Vicroy,et al.  Static and Forced-Oscillation Tests of a Generic Unmanned Combat Air Vehicle , 2012 .