不同转移潜能人大细胞肺癌细胞株转移相关microRNAs的筛选研究

背景与目的 微小RNA(microRNAs, miRNAs)参与调节肿瘤发生发展的多个过程,包括细胞的分裂增殖、细胞周期、凋亡、血管形成、侵袭和转移等。本研究应用miRNA芯片检测具有高低不同转移潜能人大细胞肺癌细胞株L9981和NL9980的miRNA表达谱,从中筛选出与大细胞肺癌转移相关的miRNAs。 方法 收集L9981和NL9980细胞,抽提总RNA进行CY3标记,将标记RNA在miRNA芯片上进行杂交反应。通过数据统计分析,筛选出表达明显差异的miRNAs。应用Real-time PCR验证芯片结果,并应用生物信息学方法预测靶基因。 结果 在不同转移潜能人大细胞肺癌L9981和NL9980细胞株中共筛选到22个表达明显差异的miRNAs。与NL9980相比,在L9981中有13个miRNAs表达上调,9个表达下调。Real-time PCR验证miR-125a-3p在细胞中的表达水平与芯片结果趋势一致,预测其靶基因可能为胰岛素样生长因子2。 结论 筛选得到与大细胞肺癌转移相关的miRNA表达谱。

[1]  Fei Gao,et al.  Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. , 2011, The Journal of clinical investigation.

[2]  E. Wang,et al.  Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells , 2010, BMC Cancer.

[3]  C. Croce,et al.  miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. , 2009, Cancer cell.

[4]  Bo Liu,et al.  MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. , 2009, Lung cancer.

[5]  Dongquan Chen,et al.  Breast cancer metastasis suppressor 1 coordinately regulates metastasis‐associated microRNA expression , 2009, International journal of cancer.

[6]  Li Wang,et al.  MicroRNA-206 Targets notch3, Activates Apoptosis, and Inhibits Tumor Cell Migration and Focus Formation* , 2009, The Journal of Biological Chemistry.

[7]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[8]  Shu Zheng,et al.  MicroRNA‐183 regulates Ezrin expression in lung cancer cells , 2008, FEBS letters.

[9]  M. F. Shannon,et al.  A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. , 2008, Cancer research.

[10]  G. Nuovo,et al.  MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. , 2008, Biochemical and biophysical research communications.

[11]  J. Foekens,et al.  Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer , 2008, Proceedings of the National Academy of Sciences.

[12]  T. Brabletz,et al.  A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells , 2008, EMBO reports.

[13]  Miriam K. Konkel,et al.  Genome analysis of the platypus reveals unique signatures of evolution , 2008, Nature.

[14]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[15]  Burton B. Yang,et al.  MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression , 2007, Proceedings of the National Academy of Sciences.

[16]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[17]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[18]  S. Spivack,et al.  Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. , 2007, Cancer research.

[19]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[20]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[21]  Qinghua Zhou,et al.  [Analysis of two-dimension gel electrophoresis of human large cell lung cancer cell lines with different metastasis potentials]. , 2005, Zhongguo fei ai za zhi = Chinese journal of lung cancer.

[22]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[23]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[25]  Qinghua Zhou,et al.  [Establishment and their biological characteristics of clonal cell subpopulations (NL9980 and L9981) from a human lung large cell carcinoma cell line (WCQH-9801)]. , 2003, Zhongguo fei ai za zhi = Chinese journal of lung cancer.

[26]  E. Wilson,et al.  Autocrine Growth Factor Signaling by Insulin-like Growth Factor-II Mediates MyoD-stimulated Myocyte Maturation* , 2003, Journal of Biological Chemistry.

[27]  K. Sugimachi,et al.  Expression of insulin-like growth factor 2 mRNA in human gastric cancer. , 1998, International journal of oncology.

[28]  D. Pravtcheva,et al.  Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. , 1998, The Journal of experimental zoology.

[29]  K. W. Kim,et al.  Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. , 1998, Cancer research.

[30]  A. Efstratiadis,et al.  Parental imprinting of the mouse insulin-like growth factor II gene , 1991, Cell.

[31]  N. Cox,et al.  Linkage disequilibrium in the human insulin/insulin-like growth factor II region of human chromosome II. , 1988, American journal of human genetics.

[32]  L. Strong,et al.  Wt 1 ablation and Igf 2 upregulation in mice result in Wilms tumors with elevated ERK 1 / 2 phosphorylation , 2010 .

[33]  Peter A. Jones,et al.  The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. , 2009, Cancer research.

[34]  Guisheng Song,et al.  MICRORNA-206 TARGETS NOTCH 3 , ACTIVATES APOPTOSIS , INHIBITS TUMOR CELL MIGRATION AND FOCI FORMATION , 2009 .