Structure, Dynamics, and Mechanical Properties of Cross-Linked Calcium Aluminosilicate Hydrate: A Molecular Dynamics Study

C-A-S-H is the main hydration product of environmental friendly concrete with cement material partially substituted by the industrial waste. The molecular structure of C-A-S-H gel determines the durability of the material. In this study, the cross-linking C-A-S-H models with Al/Si ratios of 0, 0.05, 0.10, 0.15, and 0.2 are constructed, and the structure, reactivity, and mechanical properties of the C-A-S-H gel are investigated by the reactive force field molecular dynamics. The incorporation of aluminate species in the C-A-S-H gel modifies the silicate-aluminate skeleton and interlayer water molecules. On the one hand, the bridging silicate tetrahedron is substituted by the aluminate species that polymerize with defective silicate chains, improve the crystalline order, enhance the Q species connectivity, and transform the layered C-S-H structure to cross-linked branch of C-A-S-H gel. On the other hand, the Al–Si substitution enhances the reactivity of the bridging oxygen sites in Si–O–Al, which contribute...

[1]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[2]  Chongxuan Liu,et al.  Molecular simulations of water and ion diffusion in nanosized mineral fractures. , 2009, Environmental science & technology.

[3]  C. Dobson,et al.  Location of Aluminum in Substituted Calcium Silicate Hydrate (C‐S‐H) Gels as Determined by 29Si and 27Al NMR and EELS , 1993 .

[4]  Hamlin M. Jennings,et al.  Refinements to colloid model of C-S-H in cement: CM-II , 2008 .

[5]  Joseph C. Fogarty,et al.  A reactive molecular dynamics simulation of the silica-water interface. , 2010, The Journal of chemical physics.

[6]  H. Zanni,et al.  Aluminum Incorporation in Calcium Silicate Hydrates (C−S−H) Depending on Their Ca/Si Ratio , 1999 .

[7]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[8]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[9]  D. Shapiro,et al.  Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate , 2017, Scientific Reports.

[10]  C. Labbez,et al.  Thermodynamics and Molecular Mechanism of Al Incorporation in Calcium Silicate Hydrates , 2017 .

[11]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[12]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[13]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[14]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[15]  K. V. Van Vliet,et al.  Thermodynamics of water confined in porous calcium-silicate-hydrates. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[16]  A. V. van Duin,et al.  Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[17]  T. Zhu,et al.  Stress-dependent molecular pathways of silica–water reaction , 2005 .

[18]  Richard R. Taylor,et al.  Material and Elastic Properties of Al-Tobermorite in Ancient Roman Seawater Concrete , 2013 .

[19]  Jianwei Wang,et al.  Molecular modeling of water structure in nano-pores between brucite (001) surfaces 1 1 Associate editor: U. Becker , 2004 .

[20]  Hongyan Ma,et al.  Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties , 2015 .

[21]  Zongjin Li,et al.  Molecular simulation of “hydrolytic weakening”: A case study on silica , 2014 .

[22]  Marie D. Jackson,et al.  Unlocking the secrets of Al-tobermorite in Roman seawater concrete , 2013 .

[23]  Chuanlin Hu Microstructure and mechanical properties of fly ash blended cement pastes , 2014 .

[24]  Franz-Josef Ulm,et al.  Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale , 2007 .

[25]  Rafat Siddique,et al.  Recent advances in understanding the role of supplementary cementitious materials in concrete , 2015 .

[26]  H. Bordallo,et al.  Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering. , 2006, The journal of physical chemistry. B.

[27]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[28]  S. A. Hamid The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O , 1981 .

[29]  Paulo J.M. Monteiro,et al.  Does the Al substitution in C-S-H(I) change its mechanical property? , 2011 .

[30]  H. Taylor Relationships Between Calcium Silicates and Clay Minerals , 1956 .

[31]  H. Manzano,et al.  Aluminum incorporation to dreierketten silicate chains. , 2009, The journal of physical chemistry. B.

[32]  J. Hamaekers,et al.  A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels , 2008 .

[33]  J. Grossman,et al.  Insight on Tricalcium Silicate Hydration and Dissolution Mechanism from Molecular Simulations. , 2015, ACS applied materials & interfaces.

[34]  B. Lothenbach,et al.  Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions , 2015 .

[35]  Hjh Jos Brouwers,et al.  The hydration of slag, part 1: reaction models for alkali-activated slag , 2007 .

[36]  J. F. Young,et al.  The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples , 2006 .

[37]  A. Nonat,et al.  27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. , 2012, Inorganic chemistry.

[38]  H. J. Jakobsen,et al.  A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy , 2006 .

[39]  K. Scrivener,et al.  Densification of C–S–H Measured by 1H NMR Relaxometry , 2013 .

[40]  A. V. van Duin,et al.  Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. , 2012, Journal of the American Chemical Society.

[41]  Zongjin Li,et al.  Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash , 2018 .

[42]  K. Yamada,et al.  Improvement on sulfate resistance of blended cement with high alumina slag , 2012 .

[43]  P. McDonald,et al.  Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach , 2007 .

[44]  Roland J.-M. Pellenq,et al.  First-Principles Study of Elastic Constants and Interlayer Interactions of Complex Hydrated Oxides: Case Study of Tobermorite and Jennite , 2009 .

[45]  G. Saoût,et al.  Incorporation of aluminium in calcium-silicate-hydrates , 2015 .

[46]  M. Wendland,et al.  Simulation of Forces between Humid Amorphous Silica Surfaces: A Comparison of Empirical Atomistic Force Fields , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[47]  Ananth Grama,et al.  Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques , 2012, Parallel Comput..

[48]  H. Taylor Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .

[49]  Roland J.-M. Pellenq,et al.  Engineering the bonding scheme in C–S–H: The iono-covalent framework , 2008 .

[50]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[51]  Zongjin Li,et al.  Molecular Simulation of the Ions Ultraconfined in the Nanometer-Channel of Calcium Silicate Hydrate: Hydration Mechanism, Dynamic Properties, and Influence on the Cohesive Strength. , 2017, Inorganic chemistry.

[52]  Zongjin Li,et al.  Investigation on microstructures of cementitious composites incorporating slag , 2014 .

[53]  L. Roberts,et al.  Molecular silicate and aluminate species in anhydrous and hydrated cements. , 2010, Journal of the American Chemical Society.

[54]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[55]  W. Goddard,et al.  Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. , 2012, The journal of physical chemistry. A.

[56]  H. Hirao,et al.  A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete , 2015 .

[57]  H. Manzano,et al.  A model for the C-A-S-H gel formed in alkali-activated slag cements , 2011 .

[58]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[59]  Roland J.-M. Pellenq,et al.  Evidence on the Dual Nature of Aluminum in the Calcium-Silicate-Hydrates Based on Atomistic Simulations , 2012 .

[60]  P. Monteiro,et al.  Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate , 2017, Scientific Reports.

[61]  R. Pellenq,et al.  Glassy nature of water in an ultraconfining disordered material: the case of calcium-silicate-hydrate. , 2011, Journal of the American Chemical Society.

[62]  Randall T. Cygan,et al.  Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field , 2004 .