Integral Control Design using the Implicit Lyapunov Function Approach

In this paper, we design homogeneous integral controllers of arbitrary non positive homogeneity degree for a system in the normal form with matched uncertainty/perturbation. The controllers are able to reach finite-time convergence, rejecting matched constant (Lipschitz, in the discontinuous case) perturbations. For the design, we use the Implicit Lyapunov Function method combined with an explicit Lyapunov function for the addition of the integral term.

[1]  Emmanuel Cruz-Zavala,et al.  Homogeneous High Order Sliding Mode design: A Lyapunov approach , 2017, Autom..

[2]  Jaime A. Moreno,et al.  Discontinuous Integral Control for Systems in Controller Form , 2017 .

[3]  Arie Levant,et al.  Homogeneity approach to high-order sliding mode design , 2005, Autom..

[4]  Salah Laghrouche,et al.  Higher Order Super-Twisting for Perturbed Chains of Integrators , 2017, IEEE Transactions on Automatic Control.

[5]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[6]  Wen Yu Liu,et al.  New perspectives and applications of modern control theory: In honor of Alexander S. Poznyak , 2018 .

[7]  Hisakazu Nakamura,et al.  Smooth Lyapunov functions for homogeneous differential inclusions , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[8]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[9]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[10]  Leonid M. Fridman,et al.  Continuous terminal sliding-mode controller , 2016, Autom..

[11]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[12]  Naoki Nishida,et al.  有限時間整定P-PI制御によるロボットマニピュレータの高精度位置決め制御;有限時間整定P-PI制御によるロボットマニピュレータの高精度位置決め制御;High Precision Control of Robot Manipulators via Finite-time P-PI Control , 2016 .

[13]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[14]  Leonid M. Fridman,et al.  Stabilization of the Reaction Wheel Pendulum via a Third Order Discontinuous Integral Sliding Mode Algorithm , 2018, 2018 15th International Workshop on Variable Structure Systems (VSS).

[15]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[16]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[17]  Andrey Polyakov,et al.  On homogeneity and its application in sliding mode control , 2014, Journal of the Franklin Institute.

[18]  J. Moreno Discontinuous Integral Control for Systems with Relative Degree Two , 2018 .

[19]  Jaime A. Moreno,et al.  Discontinuous integral control for mechanical systems , 2015, 2016 14th International Workshop on Variable Structure Systems (VSS).

[20]  P. Olver Nonlinear Systems , 2013 .

[21]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[22]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[23]  Andrey Polyakov,et al.  On an extension of homogeneity notion for differential inclusions , 2013, 2013 European Control Conference (ECC).