Bayesian Method of Moments (BMOM) Analysis of Parametric and Semiparametric Regression Models

The Bayesian Method of Moments is applied to standard regression models using alternative series expansions of an unknown regression function. We descriptionbe estimation loss functions, predictive loss functions and posterior odds as techniques to determine how many terms in a particular expansion to keep and how to choose among different types of expansions. the developed theory is then applied in a Monte-Carlo experiment to data generated from a CES production function.

[1]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[2]  William E. Strawderman,et al.  A Bayesian growth and yield model for slash pine plantations , 1996 .

[3]  Arnold Zellner,et al.  Minimum Expected Loss (MELO) Estimators for Functions of Parameters and Structural Coefficients of Econometric Models , 1979 .

[4]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[5]  V. Rich Personal communication , 1989, Nature.

[6]  Hua Lee,et al.  Maximum Entropy and Bayesian Methods. , 1996 .

[7]  R. L. Winkler Combining Probability Distributions from Dependent Information Sources , 1981 .

[8]  H. Ryu Maximum entropy estimation of density and regression functions , 1993 .

[9]  Arnold Zellner,et al.  To combine or not to combine? Issues of combining forecasts , 1992 .

[10]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[11]  Arnold Zellner,et al.  Bayesian regression diagnostics with applications to international consumption and income data , 1985 .

[12]  A. Zellner Optimal Information Processing and Bayes's Theorem , 1988 .

[13]  K. Chaloner,et al.  Bayesian analysis in statistics and econometrics : essays in honor of Arnold Zellner , 1996 .

[14]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[15]  Richard A. Highfield,et al.  Calculation of maximum entropy distributions and approximation of marginalposterior distributions , 1988 .

[16]  E. Soofi Capturing the Intangible Concept of Information , 1994 .

[17]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[18]  Peter E. Rossi Comparison of Alternative Functional Forms in Production , 1985 .

[19]  Arnold Zellner,et al.  The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches , 1998 .

[20]  Arnold Zellner,et al.  Bayesian Analysis in Econometrics and Statistics: The Zellner View and Papers , 1997 .

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Ehsan S. Soofi,et al.  Information Theory and Bayesian Statistics , 1996 .

[23]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[24]  Amos Golan,et al.  Maximum entropy econometrics , 1996 .

[25]  Arnold Zellner,et al.  Physics and Probability: Bayesian Analysis, Model Selection and Prediction , 1993 .

[26]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[27]  A. Zellner,et al.  Forecasting international growth rates using Bayesian shrinkage and other procedures , 1989 .

[28]  E. T. Jaynes,et al.  [Optimal Information Processing and Bayes's Theorem]: Comment , 1988 .

[29]  M. Degroot Optimal Statistical Decisions , 1970 .

[30]  I. Good,et al.  Probability and the Weighting of Evidence. , 1951 .

[31]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[32]  W. Andrew LO, . Finance: Survey.. Journal of the American Statistical Association, , . , 2000 .

[33]  K. Chaloner,et al.  A Bayesian approach to outlier detection and residual analysis , 1988 .