Degenerate parabolic stochastic partial differential equations: Quasilinear case
暂无分享,去创建一个
Arnaud Debussche | Martina Hofmanov'a | A. Debussche | J. Vovelle | Julien Vovelle | Martina Hofmanov'a
[1] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[2] Jan Seidler,et al. On Weak Solutions of Stochastic Differential Equations , 2012 .
[3] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[4] José Carrillo Menéndez. Entropy solutions for nonlinear degenerate problems , 1999 .
[5] L. Denis,et al. Lp estimates for the uniform norm of solutions of quasilinear SPDE's , 2005 .
[6] A. Debussche,et al. Scalar conservation laws with stochastic forcing , 2010, 1001.5415.
[7] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[8] Gui-Qiang G. Chen,et al. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .
[9] J. Vovelle,et al. A Kinetic Formulation for Multidimensional Scalar Conservation Laws with Boundary Conditions and Applications , 2004, SIAM J. Math. Anal..
[10] Guy Vallet,et al. A degenerate parabolic–hyperbolic Cauchy problem with a stochastic force , 2015 .
[11] Formulation cinétique des lois de conservation scalaires mulditimensionnelles , 1991 .
[12] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[13] Guy Vallet,et al. ON A STOCHASTIC FIRST-ORDER HYPERBOLIC EQUATION IN A BOUNDED DOMAIN , 2009 .
[14] Dariusz Gatarek,et al. Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .
[15] C. Marle,et al. Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière , 1996 .
[16] Panagiotis E. Souganidis,et al. Scalar conservation laws with rough (stochastic) fluxes , 2013, Stochastic Partial Differential Equations: Analysis and Computations.
[17] D. Nualart,et al. Stochastic scalar conservation laws , 2008 .
[18] Z. Brzeźniak,et al. Strong solutions to stochastic wave equations with values in Riemannian manifolds , 2007 .
[19] M. Hofmanová. Degenerate parabolic stochastic partial differential equations , 2013 .
[20] É. Pardoux,et al. Une formule d’Itô dans des espaces de Banach, et application , 1992 .
[21] Benoît Perthame,et al. Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure , 1998 .
[22] J. U. Kim,et al. On a stochastic scalar conservation law , 2003 .
[23] Benoît Perthame,et al. Kinetic formulation of conservation laws , 2002 .
[24] Guy Vallet,et al. THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION , 2012 .
[25] Panagiotis E. Souganidis,et al. Stochastic averaging lemmas for kinetic equations , 2012, 1204.0317.
[26] The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation , 2014 .
[27] Martina Hofmanová,et al. Strong solutions of semilinear stochastic partial differential equations , 2013 .
[28] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[29] M. Ondreját,et al. Stochastic NonLinear Wave Equations in Local Sobolev Spaces , 2010 .