Degenerate parabolic stochastic partial differential equations: Quasilinear case

We study the Cauchy problem for a quasilinear degenerate parabolic stochastic partial differential equation driven by a cylindrical Wiener process. In particular, we adapt the notion of kinetic formulation and kinetic solution and develop a well-posedness theory that includes also an $L^1$-contraction property. In comparison to the first-order case (Debussche and Vovelle, 2010) and to the semilinear degenerate parabolic case (Hofmanova, 2013), the present result contains two new ingredients: a generalized Ito formula that permits a rigorous derivation of the kinetic formulation even in the case of weak solutions of certain nondegenerate approximations and a direct proof of strong convergence of these approximations to the desired kinetic solution of the degenerate problem.

[1]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[2]  Jan Seidler,et al.  On Weak Solutions of Stochastic Differential Equations , 2012 .

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .

[5]  L. Denis,et al.  Lp estimates for the uniform norm of solutions of quasilinear SPDE's , 2005 .

[6]  A. Debussche,et al.  Scalar conservation laws with stochastic forcing , 2010, 1001.5415.

[7]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[8]  Gui-Qiang G. Chen,et al.  Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .

[9]  J. Vovelle,et al.  A Kinetic Formulation for Multidimensional Scalar Conservation Laws with Boundary Conditions and Applications , 2004, SIAM J. Math. Anal..

[10]  Guy Vallet,et al.  A degenerate parabolic–hyperbolic Cauchy problem with a stochastic force , 2015 .

[11]  Formulation cinétique des lois de conservation scalaires mulditimensionnelles , 1991 .

[12]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[13]  Guy Vallet,et al.  ON A STOCHASTIC FIRST-ORDER HYPERBOLIC EQUATION IN A BOUNDED DOMAIN , 2009 .

[14]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[15]  C. Marle,et al.  Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière , 1996 .

[16]  Panagiotis E. Souganidis,et al.  Scalar conservation laws with rough (stochastic) fluxes , 2013, Stochastic Partial Differential Equations: Analysis and Computations.

[17]  D. Nualart,et al.  Stochastic scalar conservation laws , 2008 .

[18]  Z. Brzeźniak,et al.  Strong solutions to stochastic wave equations with values in Riemannian manifolds , 2007 .

[19]  M. Hofmanová Degenerate parabolic stochastic partial differential equations , 2013 .

[20]  É. Pardoux,et al.  Une formule d’Itô dans des espaces de Banach, et application , 1992 .

[21]  Benoît Perthame,et al.  Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure , 1998 .

[22]  J. U. Kim,et al.  On a stochastic scalar conservation law , 2003 .

[23]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[24]  Guy Vallet,et al.  THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION , 2012 .

[25]  Panagiotis E. Souganidis,et al.  Stochastic averaging lemmas for kinetic equations , 2012, 1204.0317.

[26]  The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation , 2014 .

[27]  Martina Hofmanová,et al.  Strong solutions of semilinear stochastic partial differential equations , 2013 .

[28]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[29]  M. Ondreját,et al.  Stochastic NonLinear Wave Equations in Local Sobolev Spaces , 2010 .