Liberation 1, 2, 3: Theoretical analysis of the effect of space dimension on mineral liberation by size reduction☆

Abstract A derivation is made, for space dimensionality of 1, 2 and 3, of mineral liberation by size reduction. The mathematical solution to the problem of mineral liberation prediction is derived through the use of mathematical morphology and integral geometry methods. The solution is worked out for real particles produced by fragmentation of ores, and for ore textures which correspond to Boolean schemes with primary Poisson polyhedra, and Poisson polyhedral textures. These textures have characteristics which are often encountered in ores. For a sparse phase it is demonstrated that the degrees of liberation in 1, 2 and 3 dimensions are related by a simple relationship: L d+i (D) = ( L d ( D )) 2 i where L d ( D ) is the degree of liberation at screen size D measured in d dimensions. The degrees of liberation follow an exponential decay: l d ( D )= exp [−0.693( D D 50,d )] with D 50,d+i = D 50,d /2i

[1]  G. Matheron Random Sets and Integral Geometry , 1976 .

[2]  R. E. Miles Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats , 1969, Advances in Applied Probability.

[3]  R. King A model for the quantitative estimation of mineral liberation by grinding , 1979 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  G. Matheron Ensembles fermés aléatoires, ensembles semi-markoviens et polyèdres poissoniens , 1972, Advances in Applied Probability.

[6]  E. G. Enns,et al.  Random paths through a convex region , 1978 .

[7]  A. Gaudin Principles of Mineral Dressing , 1939 .

[8]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[9]  R. P. King,et al.  Determination of the distribution of size of irregularly shaped particles from measurements on sections or projected areas , 1982 .

[10]  M. A. Berube,et al.  Etudes de libération des minerais à l'Université Laval (Québec). Principes et mesures à l'aide d'un analyseur d'images , 1983 .

[11]  M. W. Crofton,et al.  VII. On the theory of local probability, applied to straight lines drawn at random in a plane; the methods used being also extended to the proof of certain new theorems in the integral calculus , 1868, Philosophical Transactions of the Royal Society of London.

[12]  H. Minkowski Volumen und Oberfläche , 1903 .

[13]  M. A. Bérubé,et al.  Evolution of the mineral liberation characteristics of an iron ore undergoing grinding , 1984 .

[14]  G. Matheron LES POLYEDRES POISSONIENS ISOTROPES , 1972 .

[15]  James A. Finch,et al.  Circuit analysis and flotation kinetics at Brunswick Mining and Smelting , 1988 .

[16]  G. Barbery,et al.  Random sets and integral geometry in comminution and liberation of minerals , 1987 .

[17]  H. Minkowski Volumen und Oberfläche , 1903 .