Photovoltaic and photophysical properties of a novel bis-3-hexylthiophene substituted quinoxaline derivative

[1]  L. Toppare,et al.  Processable and multichromic polymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline , 2008 .

[2]  F. Krebs,et al.  Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing , 2007 .

[3]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[4]  F. Krebs,et al.  Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole) , 2007 .

[5]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[6]  Frederik C. Krebs,et al.  Large area plastic solar cell modules , 2007 .

[7]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[8]  Benjamin D. Reeves,et al.  Photovoltaic activity of a PolyProDOT derivative in a bulk heterojunction solar cell , 2006 .

[9]  Mats Andersson,et al.  An alternating low band-gap polyfluorene for optoelectronic devices , 2006 .

[10]  Mm Martijn Wienk,et al.  Low band gap polymer bulk heterojunction solar cells , 2006 .

[11]  Frederik C. Krebs,et al.  Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis (thiadiazole) , 2006 .

[12]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[13]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .

[14]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[15]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[16]  Frederik C. Krebs,et al.  Significant Improvement of Polymer Solar Cell Stability , 2005 .

[17]  Helmut Neugebauer,et al.  Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell , 2005 .

[18]  J. Reynolds,et al.  Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene−Dioxythiophene Polymer , 2005 .

[19]  Oliver Ambacher,et al.  Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene , 2005 .

[20]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[21]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[22]  Vladimir Dyakonov,et al.  Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites , 2004 .

[23]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[24]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[25]  Helmut Neugebauer,et al.  Novel Regiospecific MDMO−PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells , 2004 .

[26]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[27]  C. Winder,et al.  Investigation of excited states in polymer/fullerene solar cells by means of photoinduced reflection-/absorption spectroscopy , 2004 .

[28]  Auke Meetsma,et al.  Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells. , 2003, Chemical communications.

[29]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[30]  C. Winder,et al.  Spectroscopic properties of PEDOTEHIITN, a novel soluble low band-gap conjugated polymer , 2003 .

[31]  M. Knipper,et al.  University of Groningen Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells Chirvase, , 2003 .

[32]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[33]  Christoph J. Brabec,et al.  A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes , 2002 .

[34]  Christoph J. Brabec,et al.  Sensitization of low bandgap polymer bulk heterojunction solar cells , 2002 .

[35]  Christoph J. Brabec,et al.  The influence of materials work function on the open circuit voltage of plastic solar cells , 2002 .

[36]  Yang Yang,et al.  Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices , 2001 .

[37]  Y. Eichen,et al.  Dispersive dynamics of photoexcitations in conjugated polymers measured by photomodulation spectroscopy , 2001 .

[38]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[39]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[40]  D. Meissner,et al.  Monochromatic versus solar efficiencies of organic solar cells , 2000 .

[41]  A. J. Heeger,et al.  Morphology of composites of semiconducting polymers mixed with C60 , 1996 .

[42]  Daniel Moses,et al.  Electron and energy transfer processes of photoexcited oligothiophenes onto tetracyanoethylene and C60 , 1994 .

[43]  Alan J. Heeger,et al.  Photoinduced electron transfer from conducting polymers onto Buckminsterfullerene , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[44]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[45]  C. Tang Two‐layer organic photovoltaic cell , 1986 .