Analysis and Modeling of Chromosome Congression During Mitosis in the Chemotherapy Drug Cisplatin

[1]  Timothy J. Mitchison,et al.  Deformations Within Moving Kinetochores Reveal Different Sites of Active and Passive Force Generation , 2012, Science.

[2]  Guillaume Gay,et al.  A stochastic model of kinetochore–microtubule attachment accurately describes fission yeast chromosome segregation , 2012, The Journal of cell biology.

[3]  D. Compton,et al.  Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors , 2011, Proceedings of the National Academy of Sciences.

[4]  Kerry Bloom,et al.  Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring , 2011, The Journal of cell biology.

[5]  Shulan Zhang,et al.  ZM447439, the Aurora kinase B inhibitor, suppresses the growth of cervical cancer SiHa cells and enhances the chemosensitivity to cisplatin , 2011, The journal of obstetrics and gynaecology research.

[6]  I. Cheeseman,et al.  Sensing centromere tension: Aurora B and the regulation of kinetochore function. , 2010, Trends in cell biology.

[7]  Tamir Gonen,et al.  Tension directly stabilizes reconstituted kinetochore-microtubule attachments , 2010, Nature.

[8]  Alex Mogilner,et al.  Towards a quantitative understanding of mitotic spindle assembly and mechanics , 2010, Journal of Cell Science.

[9]  J. Pines,et al.  Centromere tension: a divisive issue , 2010, Nature Cell Biology.

[10]  Morten O. Christensen,et al.  Mitotic chromosomes are constrained by topoisomerase II–sensitive DNA entanglements , 2010, The Journal of cell biology.

[11]  David J. Odde,et al.  Model Convolution: A Computational Approach to Digital Image Interpretation , 2010, Cellular and molecular bioengineering.

[12]  L. Nezi,et al.  Sister chromatid tension and the spindle assembly checkpoint. , 2009, Current opinion in cell biology.

[13]  T. Mitchison,et al.  Force and Length in the Mitotic Spindle , 2009, Current Biology.

[14]  Bruce F. McEwen,et al.  Protein Architecture of the Human Kinetochore Microtubule Attachment Site , 2009, Cell.

[15]  Jesse C. Gatlin,et al.  Condensin regulates the stiffness of vertebrate centromeres. , 2009, Molecular biology of the cell.

[16]  Andrew D. Franck,et al.  The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion , 2009, Cell.

[17]  E. Salmon,et al.  Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity , 2009, The Journal of cell biology.

[18]  K. Takagaki,et al.  Kinetochore stretching inactivates the spindle assembly checkpoint , 2009, The Journal of cell biology.

[19]  Pengye Wang,et al.  Cisplatin induces loop structures and condensation of single DNA molecules , 2009, Nucleic acids research.

[20]  Samuel F. Bakhoum,et al.  Genome stability is ensured by temporal control of kinetochore-microtubule dynamics , 2008, Nature Cell Biology.

[21]  S. Obukhov,et al.  Elasticity of cisplatin-bound DNA reveals the degree of cisplatin binding. , 2008, Physical review letters.

[22]  David J. Odde,et al.  Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules , 2008, Cell.

[23]  J. Bachant,et al.  DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. , 2008, Molecular biology of the cell.

[24]  K. Bloom,et al.  Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. , 2008, Trends in cell biology.

[25]  J. Marko,et al.  Micromechanical studies of mitotic chromosomes , 2004, Journal of Muscle Research & Cell Motility.

[26]  A. Strunnikov,et al.  Condensin function at centromere chromatin facilitates proper kinetochore tension and ensures correct mitotic segregation of sister chromatids , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[27]  D. Cimini Detection and Correction of Merotelic Kinetochore Orientation by Aurora B and its Partners , 2007, Cell cycle.

[28]  Tamir Gonen,et al.  Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis , 2007, Nature Cell Biology.

[29]  David C. Bouck,et al.  Pericentric Chromatin Is an Elastic Component of the Mitotic Spindle , 2007, Current Biology.

[30]  J. Ellenberg,et al.  Live-Cell Imaging Reveals a Stable Cohesin-Chromatin Interaction after but Not before DNA Replication , 2006, Current Biology.

[31]  S. Mateos,et al.  Cisplatin-induced endoreduplication in CHO cells: DNA damage and inhibition of topoisomerase II. , 2006, Mutation research.

[32]  Trisha N Davis,et al.  The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Biggins,et al.  The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores , 2006, Nature Cell Biology.

[34]  Kerry Bloom,et al.  Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. , 2005, Molecular biology of the cell.

[35]  A. Murray,et al.  The Centromeric Protein Sgo1 Is Required to Sense Lack of Tension on Mitotic Chromosomes , 2005, Science.

[36]  E. Salmon,et al.  The dynamic kinetochore-microtubule interface , 2004, Journal of Cell Science.

[37]  Ye Ding,et al.  Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells , 1998, Chromosome Research.

[38]  David J Odde,et al.  Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. , 2003, Biophysical journal.

[39]  A. Murray,et al.  The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. , 2001, Genes & development.

[40]  Kerry Bloom,et al.  Budding Yeast Chromosome Structure and Dynamics during Mitosis , 2001, The Journal of cell biology.

[41]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[42]  H. Burger,et al.  A genome-wide screening in Saccharomyces cerevisiae for genes that confer resistance to the anticancer agent cisplatin. , 2000, Biochemical and biophysical research communications.

[43]  S. Lippard,et al.  Structure, Recognition, and Processing of Cisplatin-DNA Adducts. , 1999, Chemical reviews.

[44]  R. Moses,et al.  Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae. , 1999, Mutation research.

[45]  E. Salmon,et al.  Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement. , 1997, Experimental cell research.

[46]  Andrew W. Murray,et al.  GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion , 1996, Current Biology.

[47]  L. Peters,et al.  Sequence‐dependent antitumor activity of paclitaxel (taxol) and cisplatin in vivo , 1995, International journal of cancer.

[48]  D N Mastronarde,et al.  Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle , 1995, The Journal of cell biology.

[49]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.