Topological analysis of level sets and its use in data visualization

Data visualization techniques use computational modeling and rendering methods to aid scientific discovery. The data is often volumetric and arises from various 3D imaging modalities. Time-varying volumetric data also arises as a result of various time-varying computational simulations. The data analysis involves identification, extraction, and quantitative analysis of features present in data, which are often represented as isosurfaces (i.e. level sets). This dissertation is focused on analyzing level sets topology in each of the processes to augment accuracy and functionality of visualization. We use contour trees as our main topological tool. The contour tree has been used to compute the topology of isosurfaces, generate a minimal seed set for accelerated isosurface extraction, and additionally provides a user interface to segment individual contour components in a scalar field. As one of the main contributions of our dissertation, we extend the benefits of contour trees to the analysis of time-varying data. We define temporal correspondence of contour components, and describe an algorithm to compute the correspondence information with time dependent contour trees. A graph representing the topology changes of time-varying isosurfaces is constructed in real-time for any selected isovalue using the precomputed correspondence information. Quantitative properties such as surface area and volume of contour components are computed and labelled on the graph. This topology change graph helps users to detect significant topological and geometric changes in time-varying isosurfaces. The graph is also used as an interactive user interface to segment, track and visualize the evolution of any selected contour components over time. The accurate construction of contour trees usually requires the data to be defined over a tetrahedral mesh of the domain. Most scalar volumetric data are very often defined over a rectilinear grid. Based on an analysis of level set topology of trilinear functions, the second contribution of my thesis is a procedure to decompose a rectilinear grid cell into a set of tetrahedra with the property that the level sets topology is preserved through the decomposition. General visualization algorithms that require scalar data to be defined on a tetrahedral grid utilize this technique to process trilinear functions on 3D rectilinear data, with topological preservation. The final part of my dissertation addresses the problem of triangular and tetrahedral mesh extraction from volumetric data. I focus specifically on generating a manifold mesh with correct trilinear topology. That is directly applicable to multi-resolution meshing of level sets of 3D imaging and time-varying simulation data.

[1]  Roger Crawfis,et al.  Isosurfacing in higher dimensions , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[2]  Yi-Jen Chiang,et al.  Progressive Simplification of Tetrahedral Meshes Preserving All Isosurface Topologies , 2003, Comput. Graph. Forum.

[3]  Valerio Pascucci,et al.  Multi-resolution dynamic meshes with arbitrary deformations , 2000, IEEE Visualization.

[4]  Xin Wang,et al.  Tracking scalar features in unstructured data sets , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  Paolo Cignoni,et al.  Speeding Up Isosurface Extraction Using Interval Trees , 1997, IEEE Trans. Vis. Comput. Graph..

[7]  Chandrajit L. Bajaj,et al.  Time-varying contour topology , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[9]  Jack Snoeyink,et al.  Path Seeds and Flexible Isosurfaces - Using Topology for Exploratory Visualization , 2003, VisSym.

[10]  Valerio Pascucci,et al.  Visualization of scalar topology for structural enhancement , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[11]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[12]  Edwin H. Blake,et al.  The Mesh Propagation Algorithm for Isosurface Construction , 1994, Comput. Graph. Forum.

[13]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[14]  Jarek Rossignac,et al.  The Safari interface for visualizing time-dependent volume data using iso-surfaces and contour spectra , 2003, Comput. Geom..

[15]  S. Rana,et al.  Topological data structures for surfaces: an introduction to geographical information science. , 2006 .

[16]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[17]  Valerio Pascucci,et al.  Morse Complexes for Piecewise Linear 3-Manifolds , 2003 .

[18]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[19]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[20]  William J. Schroeder,et al.  Compatible triangulations of spatial decompositions , 2004, IEEE Visualization 2004.

[21]  W RuiterdeG.C.,et al.  Shape in chemistry: An introduction to molecular shape and topology , 1995 .

[22]  Charles D. Hansen,et al.  Isosurface extraction in time-varying fields using a Temporal Branch-on-Need Tree (T-BON) , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[23]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[24]  Günter Rote,et al.  Simple and optimal output-sensitive construction of contour trees using monotone paths , 2005, Comput. Geom..

[25]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[26]  Roger Crawfis,et al.  Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[27]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[28]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[29]  Tosiyasu L. Kunii,et al.  Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data , 1995, Comput. Graph. Forum.

[30]  Rephael Wenger,et al.  Volume Tracking Using Higher Dimensional Isocontouring , 2003, IEEE Visualization.

[31]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[32]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[33]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[34]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[35]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[36]  Jack Snoeyink,et al.  Simplicial subdivisions and sampling artifacts , 2001, Proceedings Visualization, 2001. VIS '01..

[37]  Han-Wei Shen,et al.  Isosurface extraction in time-varying fields using a temporal hierarchical index tree , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[38]  Valerio Pascucci,et al.  Interactive view-dependent rendering of large isosurfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[39]  Nathan A. Baker,et al.  Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. , 2004, Biophysical journal.

[40]  Ariel Shamir,et al.  Progressive Tracking of Isosurfaces in Time-Varying Scalar Fields , 2002 .

[41]  Renato Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[42]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[43]  Mikhail N. Vyalyi,et al.  Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.

[44]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[45]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[46]  C. Taylor,et al.  Predictive medicine: computational techniques in therapeutic decision-making. , 1999, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[47]  Chandrajit L. Bajaj,et al.  Volumetric video compression for interactive playback , 2004, Comput. Vis. Image Underst..

[48]  Valerio Pascucci,et al.  Efficient computation of the topology of level sets , 2002, IEEE Visualization, 2002. VIS 2002..

[49]  Xiaoyu Zhang,et al.  Parallel and Out-of-core View-dependent Isocontour Visualization Using Random Data Distribution , 2002, VisSym.

[50]  Bong-Soo Sohn Topology Preserving Tetrahedral Decomposition of Trilinear Cell , 2007, International Conference on Computational Science.

[51]  Valerio Pascucci On the topology of the level sets of a scalar field , 2001, CCCG.

[52]  Chandrajit L. Bajaj,et al.  Adaptive and quality 3D meshing from imaging data , 2003, SM '03.

[53]  Valerio Pascucci,et al.  Multi-resolution Data Structure for Two-dimensional Morse Functions , 2003 .

[54]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[55]  Wendy S. Koegler Case study: application of feature tracking to analysis of autoignition simulation data , 2001, Proceedings Visualization, 2001. VIS '01..

[56]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[57]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[58]  Han-Wei Shen,et al.  Efficient isosurface tracking using precomputed correspondence table , 2004, VISSYM'04.

[59]  Gregory M. Nielson,et al.  Interval volume tetrahedrization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[60]  Valerio Pascucci,et al.  Time-varying reeb graphs for continuous space-time data , 2004, SCG '04.

[61]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[62]  David Ellsworth,et al.  Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[63]  I. Fujishiro,et al.  Volumetric Data Exploration Using Interval Volume , 1996, IEEE Trans. Vis. Comput. Graph..

[64]  Yi-Jen Chiang Out-of-core isosurface extraction of time-varying fields over irregular grids , 2003, IEEE Visualization, 2003. VIS 2003..

[65]  David A. Lane,et al.  Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition , 1996, IEEE Trans. Vis. Comput. Graph..

[66]  Chandrajit L. Bajaj,et al.  Feature based volumetric video compression for interactive playback , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[67]  M. V. D. Panne,et al.  Topological manipulation of isosurfaces , 2004 .

[68]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.