Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction

Run Hu, Sotaro Iwamoto, Lei Feng, Shenghong Ju , Shiqian Hu, Masato Ohnishi, Naomi Nagai, Kazuhiko Hirakawa , and Junichiro Shiomi 2,5,6,* State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan Institute for Nano Quantum Information Electronics, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi Chuo-ku, 103-0027 Tokyo, Japan

[1]  Avik W. Ghosh,et al.  Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport , 2018 .

[2]  Bruce L. Davis,et al.  Nanophononic metamaterial: thermal conductivity reduction by local resonance. , 2013, Physical review letters.

[3]  Martin Maldovan,et al.  Phonon wave interference and thermal bandgap materials. , 2015, Nature materials.

[4]  J. Shiomi,et al.  Effective phonon mean free path in polycrystalline nanostructures , 2015 .

[5]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[6]  Chiho Kim,et al.  Machine learning in materials informatics: recent applications and prospects , 2017, npj Computational Materials.

[7]  A. Gossard,et al.  Phonon localization in heat conduction , 2016, Science Advances.

[8]  A. Choudhary,et al.  Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters , 2014, Integrating Materials and Manufacturing Innovation.

[9]  Xiaobing Luo,et al.  First-principle-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film , 2016 .

[10]  Gang Chen,et al.  Anderson Localization of Thermal Phonons Leads to a Thermal Conductivity Maximum. , 2016, Nano letters.

[11]  J. Shiomi,et al.  Towards ultimate impedance of phonon transport by nanostructure interface , 2019, APL Materials.

[12]  J. Shiomi,et al.  Phonon-interference resonance effects in nanoparticles embedded in a matrix , 2017, 1712.00564.

[13]  Li-Ming Tang,et al.  Phonon wave interference in graphene and boron nitride superlattice , 2016 .

[14]  W. A. Atkinson,et al.  Generalized Inverse Participation Ratio as a Possible Measure of Localization for Interacting Systems , 2010, 1011.0659.

[15]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[16]  Junichiro Shiomi,et al.  Designing Nanostructures for Phonon Transport via Bayesian Optimization , 2016, 1609.04972.

[17]  Gang Chen,et al.  Partially coherent phonon heat conduction in superlattices , 2003 .

[18]  Satoshi Watanabe,et al.  Universality and diversity in a phonon-transmission histogram of isotope-disordered carbon nanotubes. , 2011, Physical Review Letters.

[19]  Junichiro Shiomi,et al.  Multifunctional structural design of graphene thermoelectrics by Bayesian optimization , 2018, Science Advances.

[20]  A. Minnich,et al.  Coherent and Incoherent Thermal Transport in Nanomeshes , 2014, 1403.7647.

[21]  Debdeep Jena,et al.  Heat‐Transport Mechanisms in Superlattices , 2009 .

[22]  M. Nomura,et al.  Heat conduction tuning by wave nature of phonons , 2015, Science Advances.

[23]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[24]  Yun Song,et al.  Dynamical mean field study of the two-dimensional disordered Hubbard model , 2007, 0707.0791.

[25]  M. Nomura,et al.  Heat guiding and focusing using ballistic phonon transport in phononic nanostructures , 2016, Nature Communications.

[26]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.

[27]  Jivtesh Garg,et al.  Minimum thermal conductivity in superlattices: A first-principles formalism , 2012 .

[28]  Sean Paradiso,et al.  Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification , 2016 .

[29]  M. Nomura,et al.  Randomness-Induced Phonon Localization in Graphene Heat Conduction. , 2018, The journal of physical chemistry letters.

[30]  H. Fehske,et al.  Distribution of the local density of states as a criterion for Anderson localization: Numerically exact results for various lattices in two and three dimensions , 2010, 1002.2895.

[31]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[32]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[33]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[34]  Turab Lookman,et al.  Learning from data to design functional materials without inversion symmetry , 2017, Nature Communications.

[35]  S. Cabrini,et al.  Investigation of phonon coherence and backscattering using silicon nanomeshes , 2017, Nature Communications.

[36]  Takashi Miyake,et al.  Crystal structure prediction accelerated by Bayesian optimization , 2018 .

[37]  L. Paulatto,et al.  Phonon hydrodynamics in two-dimensional materials , 2015, Nature Communications.

[38]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[39]  Pamela M. Norris,et al.  Tuning Phonon Transport: From Interfaces to Nanostructures , 2013 .

[40]  J. Shiomi,et al.  Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure. , 2018, Physical review letters.

[41]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[42]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[43]  D. Muller,et al.  Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.

[44]  Alok Choudhary,et al.  A predictive machine learning approach for microstructure optimization and materials design , 2015, Scientific Reports.