Robust Variational-Based Kalman Filter for Outlier Rejection With Correlated Measurements

State estimation is a fundamental task in many engineering fields, and therefore robust nonlinear filtering techniques able to cope with misspecified, uncertain and/or corrupted models must be designed for real-life applicability. In this contribution we explore nonlinear Gaussian filtering problems where measurements may be corrupted by outliers, and propose a new robust variational-based filtering methodology able to detect and mitigate their impact. This method generalizes previous contributions to the case of multiple outlier indicators for both independent and dependent observation models. An illustrative example is provided to support the discussion and show the performance improvement.

[1]  Lamine Mili,et al.  Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator , 2010, IEEE Transactions on Signal Processing.

[2]  P. Groves Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems , 2007 .

[3]  O. Montenbruck,et al.  Springer Handbook of Global Navigation Satellite Systems , 2017 .

[4]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[5]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[6]  Jonathon A. Chambers,et al.  A Novel Robust Gaussian–Student's t Mixture Distribution Based Kalman Filter , 2019, IEEE Transactions on Signal Processing.

[7]  Yonggang Zhang,et al.  A Novel Robust Student's t-Based Kalman Filter , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Yonggang Zhang,et al.  A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices , 2018, IEEE Transactions on Automatic Control.

[9]  Jun Fang,et al.  Robust Gaussian Kalman Filter With Outlier Detection , 2018, IEEE Signal Processing Letters.

[10]  Michael Muma,et al.  Robust Statistics for Signal Processing , 2018 .

[11]  Ondřej Straka,et al.  Noise covariance matrices in state‐space models: A survey and comparison of estimation methods—Part I , 2017 .

[12]  Wei Zhang,et al.  A unified framework for M-estimation based robust Kalman smoothing , 2019, Signal Process..

[13]  V. Šmídl,et al.  The Variational Bayes Method in Signal Processing , 2005 .

[14]  Rick S. Blum,et al.  Unexpected properties and optimum-distributed sensor detectors for dependent observation cases , 2000, IEEE Trans. Autom. Control..

[15]  Eric Chaumette,et al.  On LMVDR Estimators for LDSS Models: Conditions for Existence and Further Applications , 2019, IEEE Transactions on Automatic Control.

[16]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[17]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[18]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[19]  E. Duflos,et al.  Gnss performance enhancement in urban environment based on pseudo-range error model , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[20]  Peng Shi,et al.  Robust Kalman Filters Based on Gaussian Scale Mixture Distributions With Application to Target Tracking , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[21]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[22]  Eric Chaumette,et al.  Minimum Variance Distortionless Response Estimators for Linear Discrete State-Space Models , 2017, IEEE Transactions on Automatic Control.

[23]  Fredrik Gustafsson,et al.  Robust Inference for State-Space Models with Skewed Measurement Noise , 2015, IEEE Signal Processing Letters.

[24]  Pau Closas,et al.  NLOS mitigation in indoor localization by marginalized Monte Carlo Gaussian smoothing , 2017, EURASIP Journal on Advances in Signal Processing.

[25]  Pau Closas,et al.  Uncertainty Exchange Through Multiple Quadrature Kalman Filtering , 2016, IEEE Signal Processing Letters.

[26]  Petar M. Djuric,et al.  Indoor Tracking: Theory, Methods, and Technologies , 2015, IEEE Transactions on Vehicular Technology.

[27]  Mónica F. Bugallo,et al.  Improving Accuracy by Iterated Multiple Particle Filtering , 2012, IEEE Signal Processing Letters.

[28]  Fredrik Gustafsson,et al.  Skew-$t$ Filter and Smoother With Improved Covariance Matrix Approximation , 2016, IEEE Transactions on Signal Processing.

[29]  Richard B. Langley RTK GPS , 1998 .

[30]  Eduardo Mario Nebot,et al.  Robust Estimation in Non-Linear State-Space Models With State-Dependent Noise , 2014, IEEE Transactions on Signal Processing.

[31]  Ralf Ziebold,et al.  Attitude Determination via GNSS Carrier Phase and Inertial Aiding , 2019, Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019).

[32]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[33]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[34]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[35]  Baochun Li,et al.  A Distributed Framework for Correlated Data Gathering in Sensor Networks , 2008, IEEE Transactions on Vehicular Technology.

[36]  Eric Chaumette,et al.  Modelling Mismatch and Noise Statistics Uncertainty in Linear MMSE Estimation , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).

[37]  Umut Orguner,et al.  Approximate Bayesian Smoothing with Unknown Process and Measurement Noise Covariances , 2014, IEEE Signal Processing Letters.

[38]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[39]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[40]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[41]  Yaakov Bar-Shalom Negative correlation and optimal tracking with Doppler measurements , 2001 .

[42]  Pau Closas,et al.  Robust Kalman Filter for RTK Positioning under Signal-Degraded Scenarios , 2019 .

[43]  Davide Dardari,et al.  Satellite and Terrestrial Radio PositioningTechniques - A signal processing perspective , 2011 .

[44]  Huadong Ma,et al.  Correlation based video processing in video sensor networks , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[45]  Arnaud Doucet,et al.  Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures , 2007, IEEE Transactions on Signal Processing.

[46]  Eric Chaumette,et al.  Recursive linearly constrained Wiener filter for robust multi-channel signal processing , 2020, Signal Process..

[47]  Lubin Chang,et al.  Unified Form for the Robust Gaussian Information Filtering Based on M-Estimate , 2017, IEEE Signal Processing Letters.

[48]  Saikat Saha,et al.  Noise Robust Online Inference for Linear Dynamic Systems , 2015, ArXiv.