Melanopsin: Another Way of Signaling Light

A subset of melanopsin-expressing retinal ganglion cells has been identified to be directly photosensitive (pRGCs), modulating a range of behavioral and physiological responses to light. Recent expression studies of melanopsin have provided compelling evidence that melanopsin is the photopigment of the pRGCs. However, the mechanism by which melanopsin transduces light information remains an open question. This review discusses the signaling pathways that may underlie melanopsin-dependent phototransduction in native pRGCs, as well as the many exciting challenges ahead.

[1]  R. Hardie,et al.  Phototransduction in Drosophila melanogaster. , 2001, The Journal of experimental biology.

[2]  J. Takahashi,et al.  Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster , 1991, Brain Research.

[3]  K. Sanderson,et al.  Development of the mammalian retina , 1993 .

[4]  C. Bridges,et al.  Visual Pigments of Some Common Laboratory Mammals , 1959, Nature.

[5]  Jaak Vilo,et al.  Prediction of the coupling specificity of G protein coupled receptors to their G proteins , 2001, ISMB.

[6]  P. Yeagle,et al.  A conformational trigger for activation of a G protein by a G protein-coupled receptor. , 2003, Biochemistry.

[7]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[8]  J. Broeck Insect G protein-coupled receptors and signal transduction. , 2001, Archives of insect biochemistry and physiology.

[9]  Y. Miyashita,et al.  The Photoreceptor Molecules in Xenopus Tadpole Tail Fin, in which Melanophores Exist , 2001 .

[10]  Jun Lu,et al.  A Broad Role for Melanopsin in Nonvisual Photoreception , 2003, The Journal of Neuroscience.

[11]  Stavros J. Hamodrakas,et al.  Bioinformatics Original Paper Prediction of the Coupling Specificity of Gpcrs to Four Families of G-proteins Using Hidden Markov Models and Artificial Neural Networks , 2022 .

[12]  J A Peters,et al.  Guide to receptors and channels, 1st edition. , 2004, British journal of pharmacology.

[13]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[14]  Satchidananda Panda,et al.  Illumination of the Melanopsin Signaling Pathway , 2005, Science.

[15]  K. Palczewski,et al.  G protein-coupled receptor rhodopsin: a prospectus. , 2003, Annual review of physiology.

[16]  T. Sakmar,et al.  Colour tuning mechanisms of visual pigments. , 1999, Novartis Foundation symposium.

[17]  R. Foster,et al.  Opsins and melanopsins , 2002, Current Biology.

[18]  D. Skene,et al.  An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans , 2001, The Journal of physiology.

[19]  R. V. Van Gelder,et al.  Cryptochromes and inner retinal non-visual irradiance detection. , 2003, Novartis Foundation symposium.

[20]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[21]  Thomas W Cronin,et al.  Melanopsin forms a functional short-wavelength photopigment. , 2003, Biochemistry.

[22]  Robert J. Lucas,et al.  Calcium Imaging Reveals a Network of Intrinsically Light-Sensitive Inner-Retinal Neurons , 2003, Current Biology.

[23]  I. Zucker,et al.  Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight , 1981 .

[24]  Prahlad T. Ram,et al.  G Protein Pathways , 2002, Science.

[25]  C. Montell,et al.  Visual transduction in Drosophila. , 1999, Annual review of cell and developmental biology.

[26]  C. Allen,et al.  Intrinsic light responses of retinal ganglion cells projecting to the circadian system , 2003, The European journal of neuroscience.

[27]  R. Foster,et al.  Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[28]  E. Nevo,et al.  Adaptive loss of ultraviolet‐sensitive/violet‐sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi) , 2002, The European journal of neuroscience.

[29]  Kwoon Y. Wong,et al.  Induction of photosensitivity by heterologous expression of melanopsin , 2005, Nature.

[30]  Hisao Tsukamoto,et al.  Cephalochordate Melanopsin: Evolutionary Linkage between Invertebrate Visual Cells and Vertebrate Photosensitive Retinal Ganglion Cells , 2005, Current Biology.

[31]  K. Yau,et al.  Melanopsin-Dependent Photoreception Provides Earliest Light Detection in the Mammalian Retina , 2005, Current Biology.

[32]  R. Crouch,et al.  Identification of RPE65 in transformed kidney cells1 , 1999, FEBS letters.

[33]  H. Philippe,et al.  How color visual pigments are tuned , 1999 .

[34]  A. Sancar,et al.  Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. , 2000, Annual review of biochemistry.

[35]  Stavros J. Hamodrakas,et al.  A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models , 2005, BMC Bioinformatics.

[36]  R. Foster,et al.  Retinal projections in mice with inherited retinal degeneration: Implications for circadian photoentrainment , 1998, The Journal of comparative neurology.

[37]  R. V. Van Gelder,et al.  Reduced Pupillary Light Responses in Mice Lacking Cryptochromes , 2003, Science.

[38]  J. Bellingham,et al.  Addition of human melanopsin renders mammalian cells photoresponsive , 2005, Nature.

[39]  Stephen P. H. Alexander,et al.  Guide to Receptors and Channels, 2nd edition , 2006 .

[40]  Edward N Pugh,et al.  G proteins and phototransduction. , 2002, Annual review of physiology.

[41]  G. Brainard,et al.  Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor , 2001, The Journal of Neuroscience.

[42]  R. V. Van Gelder,et al.  Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Yukimitsu Yabuki,et al.  GRIFFIN: a system for predicting GPCR–G-protein coupling selectivity using a support vector machine and a hidden Markov model , 2005, Nucleic Acids Res..

[44]  R. Foster,et al.  Light detection in a 'blind' mammal , 1998, Nature Neuroscience.

[45]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[46]  J A Peters,et al.  Guide to Receptors and Channels, 1st Edition , 2004, British journal of pharmacology.

[47]  Stephen K.-F. Wong,et al.  G Protein Selectivity Is Regulated by Multiple Intracellular Regions of GPCRs , 2003, Neurosignals.

[48]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[49]  Kamalakar Gulukota,et al.  Predicting GPCR-G-protein coupling using hidden Markov models , 2004, Bioinform..

[50]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[51]  R. V. Van Gelder Making (a) sense of non-visual ocular photoreception. , 2003, Trends in neurosciences.

[52]  David M. Hunt,et al.  Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids , 2005, Current Biology.

[53]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[54]  M. Rollag,et al.  Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  I. Pepe Recent Advances in Our Understanding of Rhodopsin and Phototransduction , 2001, Progress in Retinal and Eye Research.

[56]  R. Foster,et al.  Non-rod, non-cone photoreception in rodents and teleost fish. , 2003, Novartis Foundation symposium.

[57]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[58]  C. Colwell,et al.  Photoreceptors regulating circadian behavior: a mouse model. , 1993, Journal of biological rhythms.

[59]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Menaker,et al.  Circadian photoreception in the retinally degenerate mouse (rd/rd) , 1991, Journal of Comparative Physiology A.

[61]  J. Hannibal,et al.  The Photopigment Melanopsin Is Exclusively Present in Pituitary Adenylate Cyclase-Activating Polypeptide-Containing Retinal Ganglion Cells of the Retinohypothalamic Tract , 2002, The Journal of Neuroscience.

[62]  Satchidananda Panda,et al.  Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice , 2003, Science.

[63]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[64]  S. Peirson,et al.  Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice , 2003, The European journal of neuroscience.

[65]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[66]  Robert J. Lucas,et al.  Characterization of an ocular photopigment capable of driving pupillary constriction in mice , 2001, Nature Neuroscience.

[67]  M. Hankins,et al.  The Primary Visual Pathway in Humans Is Regulated According to Long-Term Light Exposure through the Action of a Nonclassical Photopigment , 2002, Current Biology.

[68]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  N. Mrosovsky,et al.  Persistence of Masking Responses to Light in Mice Lacking Rods and Cones , 2001, Journal of biological rhythms.

[70]  T. Sakmar,et al.  Rhodopsin: structural basis of molecular physiology. , 2001, Physiological reviews.

[71]  Bruce F O'Hara,et al.  Role of Melanopsin in Circadian Responses to Light , 2002, Science.

[72]  Kurt Kristiansen,et al.  Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. , 2004, Pharmacology & therapeutics.

[73]  J. Takahashi,et al.  Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). , 1991, The Journal of physiology.

[74]  T Roenneberg,et al.  Twilight Times: Light and the Circadian System , 1997, Photochemistry and photobiology.

[75]  C. Helfrich-Förster,et al.  The regulation of circadian clocks by light in fruitflies and mice. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  E. Nevo,et al.  Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi) , 1999, FEBS Letters.

[77]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  R. Foster,et al.  Visual and circadian responses to light in aged retinally degenerate mice , 1994, Vision Research.

[79]  E. Zelnickek alpha-Ketoglutaric acid and pyruvic acid in blood, cerebrospinal fluid and urine. , 1959, Nature.

[80]  Jack M. Sullivan,et al.  HEK293S Cells Have Functional Retinoid Processing Machinery , 2002, The Journal of general physiology.

[81]  G. Schultz,et al.  The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[83]  R. Foster,et al.  Expression of opsin genes early in ocular development of humans and mice. , 2003, Experimental eye research.

[84]  Russell G Foster,et al.  Mammalian photoentrainment: results, methods, and approaches. , 2005, Methods in enzymology.

[85]  D M Hunt,et al.  The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. , 2001, The Journal of experimental biology.

[86]  Satchidananda Panda,et al.  Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting , 2002, Science.