Adaptive mesh technique for thermal–metallurgical numerical simulation of arc welding processes

A major problem arising in finite element analysis of welding is the long computer times required for a complete three-dimensional analysis. In this study, an adaptative strategy for coupled thermometallurgical analysis of welding is proposed and applied in order to provide accurate results in a minimum computer time. The anisotropic adaptation procedure is controlled by a directional error estimator based on local interpolation error and recovery of the second derivatives of different fields involved in the finite element calculation. The methodology is applied to the simulation of a gas-tungsten-arc fusion line processed on a steel plate. The temperature field and the phase distributions during the welding process are analyzed by the FEM method showing the benefits of dynamic mesh adaptation. A significant increase in accuracy is obtained with a reduced computational effort.

[1]  M. Ainsworth,et al.  A posteriori error estimators in the finite element method , 1991 .

[2]  F. J. Heerema,et al.  EPIDAS: A multi-discipline and integrated facility for management and evaluation of engineering data , 1983 .

[3]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[4]  Michel Bellet,et al.  Numerical modeling in materials science and engineering , 2003 .

[5]  Pere Brunet,et al.  Directional adaptive surface triangulation , 1999, Comput. Aided Geom. Des..

[6]  G. Kunert Toward anisotropic mesh construction and error estimation in the finite element method , 2002 .

[7]  H. Runnemalm,et al.  Three-dimensional welding analysis using an adaptive mesh scheme ☆ , 2000 .

[8]  J.M.J. McDill,et al.  Automatic remeshing for three-dimensional finite element simulation of welding , 1997 .

[9]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[10]  Élisabeth Pichelin,et al.  Étude numérique d'estimations d'erreur a posteriori , 2000 .

[11]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[12]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[13]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[14]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[15]  Jean-Baptiste Leblond,et al.  A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size , 1984 .

[16]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[17]  A. Simon,et al.  MATHEMATICAL MODEL COUPLING PHASE TRANSFORMATIONS AND TEMPERATURE EVOLUTIONS IN STEELS , 1992 .

[18]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[19]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[20]  A. Simon,et al.  Mathematical model coupling phase transformation and temperature evolution during quenching of steels , 1985 .