Combining Local Filtering and Multiscale Analysis for Edge, Ridge, and Curvilinear Objects Detection

This paper presents a general method for detecting curvilinear structures, like filaments or edges, in noisy images. This method relies on a novel technique, the feature-adapted beamlet transform (FABT) which is the main contribution of this paper. It combines the well-known beamlet transform (BT), introduced by Donoho , with local filtering techniques in order to improve both detection performance and accuracy of the BT. Moreover, as the desired feature detector is chosen to belong to the class of steerable filters, our transform requires only O(N log(N)) operations, where N = n 2 is the number of pixels. Besides providing a fast implementation of the FABT on discrete grids, we present a statistically controlled method for curvilinear objects detection. To extract significant objects, we propose an algorithm in four steps: 1) compute the FABT, 2) normalize beamlet coefficients, 3) select meaningful beamlets thanks to a fast energy-based minimization, and 4) link beamlets together in order to get a list of objects. We present an evaluation on both synthetic and real data, and demonstrate substantial improvements of our method over classical feature detectors.

[1]  Jean-Luc Starck,et al.  Analysis of the Spatial Distribution of Galaxies by Multiscale Methods , 2005, EURASIP J. Adv. Signal Process..

[2]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jean-Christophe Olivo-Marin,et al.  Detection of curvilinear objects in biological noisy image using feature-adapted fast slant stack , 2007, SPIE Optical Engineering + Applications.

[4]  David L. Donoho,et al.  Fast X-Ray and Beamlet Transforms for Three-Dimensional Data , 2002 .

[5]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[6]  Xiaoming Huo,et al.  Near-optimal detection of geometric objects by fast multiscale methods , 2005, IEEE Transactions on Information Theory.

[7]  Charles A. Bouman,et al.  Fast search for best representations in multitree dictionaries , 2006, IEEE Transactions on Image Processing.

[8]  Xiaoming Huo,et al.  Recovering filamentary objects in severely degraded binary images using beamlet-driven partitioning , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Ingemar J. Cox,et al.  A Bayesian multiple-hypothesis approach to edge grouping and contour segmentation , 1993, International Journal of Computer Vision.

[10]  Minh N. Do,et al.  Orthonormal finite ridgelet transform for image compression , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[11]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[12]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[13]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[15]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[16]  Xiaoming Huo Minimax correlation between a line segment and a beamlet , 2005 .

[17]  Josiane Zerubia,et al.  Gaussian approximations of fluorescence microscope PSF models , 2006 .

[18]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[19]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[20]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Ronald R. Coifman,et al.  A Framework for Discrete Integral Transformations II-The 2D Discrete Radon Transform , 2008, SIAM J. Sci. Comput..

[22]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[23]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[24]  Tomaso Erseghe,et al.  Unified fractional Fourier transform and sampling theorem , 1999, IEEE Trans. Signal Process..

[25]  David H. Eberly,et al.  Ridges for image analysis , 1994, Journal of Mathematical Imaging and Vision.

[26]  Mathews Jacob,et al.  Design of steerable filters for feature detection using canny-like criteria , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[28]  Baltasar Beferull-Lozano,et al.  Directionlets: anisotropic multidirectional representation with separable filtering , 2006, IEEE Transactions on Image Processing.

[29]  S. Mallat A wavelet tour of signal processing , 1998 .

[30]  A.I. Zayed,et al.  A convolution and product theorem for the fractional Fourier transform , 1998, IEEE Signal Processing Letters.

[31]  Til Aach,et al.  Design of Multi-Steerable Filters and their Application for the Detection of Corners and Junctions , 2007, 2007 IEEE International Conference on Image Processing.

[32]  Xiaoming Huo Exact lower bound for proportion of maximally embedded beamlet , 2005, Appl. Math. Lett..

[33]  Ronald R. Coifman,et al.  A Framework for Discrete Integral Transformations I-The Pseudopolar Fourier Transform , 2008, SIAM J. Sci. Comput..

[34]  Xiaoming Huo,et al.  ADAPTIVE MULTISCALE DETECTION OF FILAMENTARY STRUCTURES IN A BACKGROUND OF UNIFORM RANDOM POINTS 1 , 2006 .

[35]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[36]  Xiaoming Huo,et al.  Multiscale detection of filamentary features in image data , 2003, SPIE Optics + Photonics.

[37]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[38]  Minh N. Do,et al.  The finite ridgelet transform for image representation , 2003, IEEE Trans. Image Process..

[39]  Xiaoming Huo,et al.  JBEAM: multiscale curve coding via beamlets , 2005, IEEE Transactions on Image Processing.

[40]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[41]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[42]  Bo Zhang,et al.  Automated super-resolution detection of fluorescent rods in 2D , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[43]  David H. Bailey,et al.  The Fractional Fourier Transform and Applications , 1991, SIAM Rev..

[44]  Sylvain Berlemont,et al.  Detection of Curvilinear Objects in Noisy Image using Feature-Adapted Beamlet Transform , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[45]  Xiaoming Huo,et al.  Beamlet pyramids: a new form of multiresolution analysis suited for extracting lines, curves, and objects from very noisy image data , 2000, SPIE Optics + Photonics.

[46]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[47]  Achi Brandt,et al.  Fast Calculation of Multiple Line Integrals , 1999, SIAM J. Sci. Comput..

[48]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[49]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[50]  D. Donoho,et al.  Adaptive multiscale detection of filamentary structures embedded in a background of uniform random points , 2003 .